BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33501315)

  • 1. Design, Modeling, Control, and Application of Everting Vine Robots.
    Blumenschein LH; Coad MM; Haggerty DA; Okamura AM; Hawkes EW
    Front Robot AI; 2020; 7():548266. PubMed ID: 33501315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material Scrunching Enables Working Channels in Miniaturized Vine-Inspired Robots.
    Girerd C; Alvarez A; Hawkes EW; Morimoto TK
    IEEE Trans Robot; 2024; 40():2166-2180. PubMed ID: 38799790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bioinspired Soft Robot Combining the Growth Adaptability of Vine Plants with a Coordinated Control System.
    Li P; Zhang Y; Zhang G; Zhou D; Li L
    Research (Wash D C); 2021; 2021():9843859. PubMed ID: 34778791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branching Vine Robots for Unmapped Environments.
    Glick PE; Adibnazari I; Drotman D; Ruffatto Iii D; Tolley MT
    Front Robot AI; 2022; 9():838913. PubMed ID: 35402519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison of Pneumatic Actuators for Soft Growing Vine Robots.
    Kübler AM; du Pasquier C; Low A; Djambazi B; Aymon N; Förster J; Agharese N; Siegwart R; Okamura AM
    Soft Robot; 2024 May; ():. PubMed ID: 38717834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Soft, Steerable Continuum Robot That Grows via Tip Extension.
    Greer JD; Morimoto TK; Okamura AM; Hawkes EW
    Soft Robot; 2019 Feb; 6(1):95-108. PubMed ID: 30339050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stiffness Change for Reconfiguration of Inflated Beam Robots.
    Do BH; Wu S; Zhao RR; Okamura AM
    Soft Robot; 2024 Apr; ():. PubMed ID: 38683643
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of the Growing From the Tip as Robot Locomotion Strategy.
    Del Dottore E; Mondini A; Sadeghi A; Mazzolai B
    Front Robot AI; 2019; 6():45. PubMed ID: 33501061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Development of a Growing Pneumatic Soft Robot.
    Talas SK; Baydere BA; Altinsoy T; Tutcu C; Samur E
    Soft Robot; 2020 Aug; 7(4):521-533. PubMed ID: 32150509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Mathematical Modeling of Slender Biomedical Continuum Robots.
    Gilbert HB
    Front Robot AI; 2021; 8():732643. PubMed ID: 34676248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance.
    Rao P; Peyron Q; Lilge S; Burgner-Kahrs J
    Front Robot AI; 2020; 7():630245. PubMed ID: 33604355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Millimeter-Scale Soft Continuum Robots for Large-Angle and High-Precision Manipulation by Hybrid Actuation.
    Zhang T; Yang L; Yang X; Tan R; Lu H; Shen Y
    Adv Intell Syst; 2021 Feb; 3(2):2000189. PubMed ID: 33349814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Amphibious Fully-Soft Centimeter-Scale Miniature Crawling Robot Powered by Electrohydraulic Fluid Kinetic Energy.
    Xiong Q; Zhou X; Li D; Ambrose JW; Yeow RC
    Adv Sci (Weinh); 2024 Apr; 11(14):e2308033. PubMed ID: 38303577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hardware Methods for Onboard Control of Fluidically Actuated Soft Robots.
    McDonald K; Ranzani T
    Front Robot AI; 2021; 8():720702. PubMed ID: 34485392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multi-Modal Sensor Array for Human-Robot Interaction and Confined Spaces Exploration Using Continuum Robots.
    Abah C; Orekhov AL; Johnston GLH; Simaan N
    IEEE Sens J; 2022 Feb; 22(4):3585-3594. PubMed ID: 36034075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards A Physics-based Model for Steerable Eversion Growing Robots.
    Wu Z; De Iturrate Reyzabal M; Sadati SMH; Liu H; Ourselin S; Leff D; Katzschmann RK; Rhode K; Bergeles C
    IEEE Robot Autom Lett; 2023 Feb; 8(2):1005-1012. PubMed ID: 36733442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Developments of Actuation Mechanisms for Continuum Robots: A Review.
    Seleem IA; El-Hussieny H; Ishii H
    Int J Control Autom Syst; 2023; 21(5):1592-1609. PubMed ID: 37151813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turning in Worm-Like Robots: The Geometry of Slip Elimination Suggests Nonperiodic Waves.
    Kandhari A; Wang Y; Chiel HJ; Daltorio KA
    Soft Robot; 2019 Aug; 6(4):560-577. PubMed ID: 31066633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Sensing Pneumatic Compressing Actuator.
    Lin N; Zheng H; Li Y; Wang R; Chen X; Zhang X
    Front Neurorobot; 2020; 14():572856. PubMed ID: 33362501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.