These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33501357)

  • 1. Relationship Between Muscular Activity and Assistance Magnitude for a Myoelectric Model Based Controlled Exosuit.
    Missiroli F; Lotti N; Xiloyannis M; Sloot LH; Riener R; Masia L
    Front Robot AI; 2020; 7():595844. PubMed ID: 33501357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and kinematic effects of a soft exosuit on arm movements.
    Xiloyannis M; Chiaradia D; Frisoli A; Masia L
    J Neuroeng Rehabil; 2019 Feb; 16(1):29. PubMed ID: 30791919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force and Torque Characterization in the Actuation of a Walking-Assistance, Cable-Driven Exosuit.
    Rodríguez Jorge D; Bermejo García J; Jayakumar A; Lorente Moreno R; Agujetas Ortiz R; Romero Sánchez F
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Assistive Soft Wrist Exosuit for Flexion Movements With an Ergonomic Reinforced Glove.
    Chiaradia D; Tiseni L; Xiloyannis M; Solazzi M; Masia L; Frisoli A
    Front Robot AI; 2020; 7():595862. PubMed ID: 33537345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit.
    Quinlivan BT; Lee S; Malcolm P; Rossi DM; Grimmer M; Siviy C; Karavas N; Wagner D; Asbeck A; Galiana I; Walsh CJ
    Sci Robot; 2017 Jan; 2(2):. PubMed ID: 33157865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking.
    Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ
    J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IMU-based assistance modulation in upper limb soft wearable exosuits.
    Little K; Antuvan CW; Xiloyannis M; Bernardo A P S N; Kim YG; Masia L; Accoto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1197-1202. PubMed ID: 31374792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuro-cognitive assessment of intentional control methods for a soft elbow exosuit using error-related potentials.
    Tacca N; Nassour J; Ehrlich SK; Berberich N; Cheng G
    J Neuroeng Rehabil; 2022 Nov; 19(1):124. PubMed ID: 36369025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices.
    Yandell MB; Quinlivan BT; Popov D; Walsh C; Zelik KE
    J Neuroeng Rehabil; 2017 May; 14(1):40. PubMed ID: 28521803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hinge-free, non-restrictive, lightweight tethered exosuit for knee extension assistance during walking.
    Park EJ; Akbas T; Eckert-Erdheim A; Sloot LH; Nuckols RW; Orzel D; Schumm L; Ellis TD; Awad LN; Walsh CJ
    IEEE Trans Med Robot Bionics; 2020; 2(2):165-175. PubMed ID: 33748694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upper limb exosuit cable routing optimization.
    Bardi E; Ambrosini E; Pirelli A; Pedrocchi A; Braghin F; Covarrubias M; Gandolla M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From a biological template model to gait assistance with an exosuit.
    Firouzi V; Davoodi A; Bahrami F; Sharbafi MA
    Bioinspir Biomim; 2021 Nov; 16(6):. PubMed ID: 34624880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.
    Fu J; Choudhury R; Hosseini SM; Simpson R; Park JH
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off.
    Grazi L; Crea S; Parri A; Molino Lova R; Micera S; Vitiello N
    Front Neurosci; 2018; 12():71. PubMed ID: 29491830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Validation of a Modular One-To-Many Actuator for a Soft Wearable Exosuit.
    Xiloyannis M; Annese E; Canesi M; Kodiyan A; Bicchi A; Micera S; Ajoudani A; Masia L
    Front Neurorobot; 2019; 13():39. PubMed ID: 31275129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Myosuit: Bi-articular Anti-gravity Exosuit That Reduces Hip Extensor Activity in Sitting Transfers.
    Schmidt K; Duarte JE; Grimmer M; Sancho-Puchades A; Wei H; Easthope CS; Riener R
    Front Neurorobot; 2017; 11():57. PubMed ID: 29163120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.
    Young AJ; Gannon H; Ferris DP
    Front Bioeng Biotechnol; 2017; 5():37. PubMed ID: 28713810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Soft-Inflatable Exosuit for Knee Rehabilitation: Assisting Swing Phase During Walking.
    Sridar S; Qiao Z; Muthukrishnan N; Zhang W; Polygerinos P
    Front Robot AI; 2018; 5():44. PubMed ID: 33500930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper limb soft robotic wearable devices: a systematic review.
    Bardi E; Gandolla M; Braghin F; Resta F; Pedrocchi ALG; Ambrosini E
    J Neuroeng Rehabil; 2022 Aug; 19(1):87. PubMed ID: 35948915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individualization of exosuit assistance based on measured muscle dynamics during versatile walking.
    Nuckols RW; Lee S; Swaminathan K; Orzel D; Howe RD; Walsh CJ
    Sci Robot; 2021 Nov; 6(60):eabj1362. PubMed ID: 34757803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.