These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33501360)

  • 1. Combining Self-Organizing and Graph Neural Networks for Modeling Deformable Objects in Robotic Manipulation.
    Valencia AJ; Payeur P
    Front Robot AI; 2020; 7():600584. PubMed ID: 33501360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of Deformable Objects for Robotic Manipulation: A Tutorial and Review.
    Arriola-Rios VE; Guler P; Ficuciello F; Kragic D; Siciliano B; Wyatt JL
    Front Robot AI; 2020; 7():82. PubMed ID: 33501249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft object deformation monitoring and learning for model-based robotic hand manipulation.
    Cretu AM; Payeur P; Petriu EM
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):740-53. PubMed ID: 22207640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference.
    Prado da Fonseca V; Alves de Oliveira TE; Petriu EM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepDynamicHand: A Deep Neural Architecture for Labeling Hand Manipulation Strategies in Video Sources Exploiting Temporal Information.
    Arapi V; Della Santina C; Bacciu D; Bianchi M; Bicchi A
    Front Neurorobot; 2018; 12():86. PubMed ID: 30618707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acquisition and Neural Network Prediction of 3D Deformable Object Shape Using a Kinect and a Force-Torque Sensor.
    Tawbe B; Cretu AM
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28492473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grasping learning, optimization, and knowledge transfer in the robotics field.
    Pozzi L; Gandolla M; Pura F; Maccarini M; Pedrocchi A; Braghin F; Piga D; Roveda L
    Sci Rep; 2022 Mar; 12(1):4481. PubMed ID: 35296691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of Learning-Based Robotic Manipulation in Cluttered Environments.
    Mohammed MQ; Kwek LC; Chua SC; Al-Dhaqm A; Nahavandi S; Eisa TAE; Miskon MF; Al-Mhiqani MN; Ali A; Abaker M; Alandoli EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blind Manipulation of Deformable Objects Based on Force Sensing and Finite Element Modeling.
    Sanchez J; Mohy El Dine K; Corrales JA; Bouzgarrou BC; Mezouar Y
    Front Robot AI; 2020; 7():73. PubMed ID: 33501240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Embedded Framework for Fully Autonomous Object Manipulation in Robotic-Empowered Assisted Living.
    Mezzina G; De Venuto D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph-Based Visual Manipulation Relationship Reasoning Network for Robotic Grasping.
    Zuo G; Tong J; Liu H; Chen W; Li J
    Front Neurorobot; 2021; 15():719731. PubMed ID: 34483872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tactile Sensing and Control of Robotic Manipulator Integrating Fiber Bragg Grating Strain-Sensor.
    Massari L; Oddo CM; Sinibaldi E; Detry R; Bowkett J; Carpenter KC
    Front Neurorobot; 2019; 13():8. PubMed ID: 31057387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile Decoding of Edge Orientation With Artificial Cuneate Neurons in Dynamic Conditions.
    Rongala UB; Mazzoni A; Chiurazzi M; Camboni D; Milazzo M; Massari L; Ciuti G; Roccella S; Dario P; Oddo CM
    Front Neurorobot; 2019; 13():44. PubMed ID: 31312132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Active Exploration of Deformable Object Boundary Constraints through Robotic Manipulation.
    Boonvisut P; Cavusoglu MC
    Int J Rob Res; 2014 Sep; 33(11):1446-1461. PubMed ID: 25684836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling, learning, perception, and control methods for deformable object manipulation.
    Yin H; Varava A; Kragic D
    Sci Robot; 2021 May; 6(54):. PubMed ID: 34043538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-Driven Robotic Manipulation of Cloth-like Deformable Objects: The Present, Challenges and Future Prospects.
    Kadi HA; Terzić K
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and Flexible Multi-Step Cloth Manipulation Planning Using an Encode-Manipulate-Decode Network (EM*D Net).
    Arnold S; Yamazaki K
    Front Neurorobot; 2019; 13():22. PubMed ID: 31214008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Object manipulation without hands.
    Sugasawa S; Webb B; Healy SD
    Proc Biol Sci; 2021 Mar; 288(1947):20203184. PubMed ID: 33726598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic-based Soft Tactile Sensors with Deformable Continuous Force Transfer Medium for Resolving Contact Locations in Robotic Grasping and Manipulation.
    Mohammadi A; Xu Y; Tan Y; Choong P; Oetomo D
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.