BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33501689)

  • 1. Use of 5-Thio-L-Fucose to modulate binding affinity of therapeutic proteins.
    Zimmermann M; Nguyen M; Schultheiss CM; Kolmar H; Zimmer A
    Biotechnol Bioeng; 2021 May; 118(5):1818-1831. PubMed ID: 33501689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of cell culture process parameters for modulating mAb afucosylation.
    Nguyen Dang A; Mun M; Rose CM; Ahyow P; Meier A; Sandoval W; Yuk IH
    Biotechnol Bioeng; 2019 Apr; 116(4):831-845. PubMed ID: 30597531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism.
    Niwa R; Hatanaka S; Shoji-Hosaka E; Sakurada M; Kobayashi Y; Uehara A; Yokoi H; Nakamura K; Shitara K
    Clin Cancer Res; 2004 Sep; 10(18 Pt 1):6248-55. PubMed ID: 15448014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.
    Ferrara C; Grau S; Jäger C; Sondermann P; Brünker P; Waldhauer I; Hennig M; Ruf A; Rufer AC; Stihle M; Umaña P; Benz J
    Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12669-74. PubMed ID: 21768335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation.
    Gong Q; Hazen M; Marshall B; Crowell SR; Ou Q; Wong AW; Phung W; Vernes JM; Meng YG; Tejada M; Andersen D; Kelley RF
    MAbs; 2016; 8(6):1098-106. PubMed ID: 27216702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient method to control high mannose and core fucose levels in glycosylated antibody production using deoxymannojirimycin.
    Shalel Levanon S; Aharonovitz O; Maor-Shoshani A; Abraham G; Kenett D; Aloni Y
    J Biotechnol; 2018 Jun; 276-277():54-62. PubMed ID: 29673624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of FX
    Liu W; Padmashali R; Monzon OQ; Lundberg D; Jin S; Dwyer B; Lee YJ; Korde A; Park S; Pan C; Zhang B
    Biotechnol Prog; 2021 Jan; 37(1):e3061. PubMed ID: 32748555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions.
    Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ
    Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality.
    Louie S; Haley B; Marshall B; Heidersbach A; Yim M; Brozynski M; Tang D; Lam C; Petryniak B; Shaw D; Shim J; Miller A; Lowe JB; Snedecor B; Misaghi S
    Biotechnol Bioeng; 2017 Mar; 114(3):632-644. PubMed ID: 27666939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying the differences in mechanisms of mycophenolic acid controlling fucose content of glycoproteins expressed in different CHO cell lines.
    Zhang A; Tsang VL; Markely LR; Kurt L; Huang YM; Prajapati S; Kshirsagar R
    Biotechnol Bioeng; 2016 Nov; 113(11):2367-76. PubMed ID: 27093551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types.
    Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M
    Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides.
    Niwa R; Natsume A; Uehara A; Wakitani M; Iida S; Uchida K; Satoh M; Shitara K
    J Immunol Methods; 2005 Nov; 306(1-2):151-60. PubMed ID: 16219319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC.
    Kanda Y; Yamane-Ohnuki N; Sakai N; Yamano K; Nakano R; Inoue M; Misaka H; Iida S; Wakitani M; Konno Y; Yano K; Shitara K; Hosoi S; Satoh M
    Biotechnol Bioeng; 2006 Jul; 94(4):680-8. PubMed ID: 16609957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-Selective Chemoenzymatic Modification on the Core Fucose of an Antibody Enhances Its Fcγ Receptor Affinity and ADCC Activity.
    Li C; Chong G; Zong G; Knorr DA; Bournazos S; Aytenfisu AH; Henry GK; Ravetch JV; MacKerell AD; Wang LX
    J Am Chem Soc; 2021 May; 143(20):7828-7838. PubMed ID: 33977722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycan engineering reveals interrelated effects of terminal galactose and core fucose on antibody-dependent cell-mediated cytotoxicity.
    Zhang Q; Joubert MK; Polozova A; De Guzman R; Lakamsani K; Kinderman F; Xiang D; Shami A; Miscalichi N; Flynn GC; Kuhns S
    Biotechnol Prog; 2020 Nov; 36(6):e3045. PubMed ID: 32627435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The N-linked oligosaccharide at Fc gamma RIIIa Asn-45: an inhibitory element for high Fc gamma RIIIa binding affinity to IgG glycoforms lacking core fucosylation.
    Shibata-Koyama M; Iida S; Okazaki A; Mori K; Kitajima-Miyama K; Saitou S; Kakita S; Kanda Y; Shitara K; Kato K; Satoh M
    Glycobiology; 2009 Feb; 19(2):126-34. PubMed ID: 18952826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies.
    Thomann M; Reckermann K; Reusch D; Prasser J; Tejada ML
    Mol Immunol; 2016 May; 73():69-75. PubMed ID: 27058641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with FcγRIIIa and Other Fcγ Receptors.
    Isoda Y; Yagi H; Satoh T; Shibata-Koyama M; Masuda K; Satoh M; Kato K; Iida S
    PLoS One; 2015; 10(10):e0140120. PubMed ID: 26444434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two glycoengineering strategies to control the fucosylation of a monoclonal antibody.
    Mishra N; Spearman M; Donald L; Perreault H; Butler M
    J Biotechnol; 2020; 324S():100015. PubMed ID: 34154738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced binding affinity for FcgammaRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity.
    Masuda K; Kubota T; Kaneko E; Iida S; Wakitani M; Kobayashi-Natsume Y; Kubota A; Shitara K; Nakamura K
    Mol Immunol; 2007 May; 44(12):3122-31. PubMed ID: 17379311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.