BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33501689)

  • 21. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Aliyu L; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2024; 2810():249-271. PubMed ID: 38926284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced binding affinity for FcgammaRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity.
    Masuda K; Kubota T; Kaneko E; Iida S; Wakitani M; Kobayashi-Natsume Y; Kubota A; Shitara K; Nakamura K
    Mol Immunol; 2007 May; 44(12):3122-31. PubMed ID: 17379311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of IgG1 immunoeffector function by glycoengineering of the GDP-fucose biosynthesis pathway.
    Kelly RM; Kowle RL; Lian Z; Strifler BA; Witcher DR; Parekh BS; Wang T; Frye CC
    Biotechnol Bioeng; 2018 Mar; 115(3):705-718. PubMed ID: 29150961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Effector Functions Due to Antibody Defucosylation Depend on the Effector Cell Fcγ Receptor Profile.
    Bruggeman CW; Dekkers G; Bentlage AEH; Treffers LW; Nagelkerke SQ; Lissenberg-Thunnissen S; Koeleman CAM; Wuhrer M; van den Berg TK; Rispens T; Vidarsson G; Kuijpers TW
    J Immunol; 2017 Jul; 199(1):204-211. PubMed ID: 28566370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity.
    Pereira NA; Chan KF; Lin PC; Song Z
    MAbs; 2018 Jul; 10(5):693-711. PubMed ID: 29733746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients.
    Suzuki E; Niwa R; Saji S; Muta M; Hirose M; Iida S; Shiotsu Y; Satoh M; Shitara K; Kondo M; Toi M
    Clin Cancer Res; 2007 Mar; 13(6):1875-82. PubMed ID: 17363544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Potelligent antibodies as next generation therapeutic antibodies].
    Shitara K
    Yakugaku Zasshi; 2009 Jan; 129(1):3-9. PubMed ID: 19122430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies.
    Roy G; Martin T; Barnes A; Wang J; Jimenez RB; Rice M; Li L; Feng H; Zhang S; Chaerkady R; Wu H; Marelli M; Hatton D; Zhu J; Bowen MA
    MAbs; 2018 Apr; 10(3):416-430. PubMed ID: 29400603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Fc-dependent cellular cytotoxicity of Fc fusion proteins derived from TNF receptor II and LFA-3 by fucose removal from Asn-linked oligosaccharides.
    Shoji-Hosaka E; Kobayashi Y; Wakitani M; Uchida K; Niwa R; Nakamura K; Shitara K
    J Biochem; 2006 Dec; 140(6):777-83. PubMed ID: 17038352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of cell culture media additives on IgG glycosylation produced in Chinese hamster ovary cells.
    Ehret J; Zimmermann M; Eichhorn T; Zimmer A
    Biotechnol Bioeng; 2019 Apr; 116(4):816-830. PubMed ID: 30552760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC.
    Imai-Nishiya H; Mori K; Inoue M; Wakitani M; Iida S; Shitara K; Satoh M
    BMC Biotechnol; 2007 Nov; 7():84. PubMed ID: 18047682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC.
    Repp R; Kellner C; Muskulus A; Staudinger M; Nodehi SM; Glorius P; Akramiene D; Dechant M; Fey GH; van Berkel PH; van de Winkel JG; Parren PW; Valerius T; Gramatzki M; Peipp M
    J Immunol Methods; 2011 Oct; 373(1-2):67-78. PubMed ID: 21855548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro and in vivo characterization of MDX-1401 for therapy of malignant lymphoma.
    Cardarelli PM; Moldovan-Loomis MC; Preston B; Black A; Passmore D; Chen TH; Chen S; Liu J; Kuhne MR; Srinivasan M; Assad A; Witte A; Graziano RF; King DJ
    Clin Cancer Res; 2009 May; 15(10):3376-83. PubMed ID: 19401346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering nucleotide sugar synthesis pathways for independent and simultaneous modulation of N-glycan galactosylation and fucosylation in CHO cells.
    Prabhu A; Shanmugam D; Gadgil M
    Metab Eng; 2022 Nov; 74():61-71. PubMed ID: 36152932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of afucosylated antibodies in CHO cells by coexpression of an anti-FUT8 intrabody.
    Joubert S; Guimond J; Perret S; Malenfant F; Elahi SM; Marcil A; Parat M; Gilbert M; Lenferink AEG; Baardsnes J; Durocher Y
    Biotechnol Bioeng; 2022 Aug; 119(8):2206-2220. PubMed ID: 35509261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity.
    Shinkawa T; Nakamura K; Yamane N; Shoji-Hosaka E; Kanda Y; Sakurada M; Uchida K; Anazawa H; Satoh M; Yamasaki M; Hanai N; Shitara K
    J Biol Chem; 2003 Jan; 278(5):3466-73. PubMed ID: 12427744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FcγRIIIa chromatography to enrich a-fucosylated glycoforms and assess the potency of glycoengineered therapeutic antibodies.
    Freimoser-Grundschober A; Rueger P; Fingas F; Sondermann P; Herter S; Schlothauer T; Umana P; Neumann C
    J Chromatogr A; 2020 Jan; 1610():460554. PubMed ID: 31597603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa.
    Sakae Y; Satoh T; Yagi H; Yanaka S; Yamaguchi T; Isoda Y; Iida S; Okamoto Y; Kato K
    Sci Rep; 2017 Oct; 7(1):13780. PubMed ID: 29062024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies.
    Golay J; Andrea AE; Cattaneo I
    Front Immunol; 2022; 13():929895. PubMed ID: 35844552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities.
    Chung S; Quarmby V; Gao X; Ying Y; Lin L; Reed C; Fong C; Lau W; Qiu ZJ; Shen A; Vanderlaan M; Song A
    MAbs; 2012; 4(3):326-40. PubMed ID: 22531441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.