These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33501786)

  • 1. [Progress in detoxification of inhibitors generated during lignocellulose pretreatment].
    Yang L; Tan L; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2021 Jan; 37(1):15-29. PubMed ID: 33501786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.
    Kim D
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29389875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.
    Zeng Y; Zhao S; Yang S; Ding SY
    Curr Opin Biotechnol; 2014 Jun; 27():38-45. PubMed ID: 24863895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of phenolic inhibitors from lignocellulose hydrolysates using laccases for the production of fuels and chemicals.
    Fernández-Sandoval MT; García A; Teymennet-Ramírez KV; Arenas-Olivares DY; Martínez-Morales F; Trejo-Hernández MR
    Biotechnol Prog; 2024; 40(1):e3406. PubMed ID: 37964692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions.
    Arora R; Singh P; Sarangi PK; Kumar S; Chandel AK
    Crit Rev Biotechnol; 2024 Mar; 44(2):218-235. PubMed ID: 36592989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world.
    Liu YJ; Li B; Feng Y; Cui Q
    Biotechnol Adv; 2020; 40():107535. PubMed ID: 32105675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges.
    Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Patel AK; Pant D; Rajesh Banu J; Rao CV; Kim YG; Yang YH
    Bioresour Technol; 2020 Mar; 300():122724. PubMed ID: 31926792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol.
    Singh JK; Vyas P; Dubey A; Upadhyaya CP; Kothari R; Tyagi VV; Kumar A
    Front Biosci (Schol Ed); 2018 Jun; 10(2):350-371. PubMed ID: 29772563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.
    Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB
    Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitor formation and detoxification during lignocellulose biorefinery: A review.
    Guo H; Zhao Y; Chang JS; Lee DJ
    Bioresour Technol; 2022 Oct; 361():127666. PubMed ID: 35878776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products.
    Chaturvedi V; Verma P
    3 Biotech; 2013 Oct; 3(5):415-431. PubMed ID: 28324338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.
    Chandel AK; Gonçalves BC; Strap JL; da Silva SS
    Crit Rev Biotechnol; 2015; 35(3):281-93. PubMed ID: 24156399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose.
    Zhou M; Tian X
    Int J Biol Macromol; 2022 Mar; 202():256-268. PubMed ID: 35032493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.
    Bhalla A; Bansal N; Kumar S; Bischoff KM; Sani RK
    Bioresour Technol; 2013 Jan; 128():751-9. PubMed ID: 23246299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-Chain FeCl
    Liu J; Zhang X; Peng H; Li T; Liu P; Gao H; Wang Y; Tang J; Li Q; Qi Z; Peng L; Xia T
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of pretreatment on topochemical and ultrastructural changes of lignocellulose plant cell walls: a review].
    Ji Z; Ling Z; Zhang X; Ma J; Xu F
    Sheng Wu Gong Cheng Xue Bao; 2014 May; 30(5):707-15. PubMed ID: 25118394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates.
    Liu ZL
    Appl Microbiol Biotechnol; 2011 May; 90(3):809-25. PubMed ID: 21380517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered microbial host selection for value-added bioproducts from lignocellulose.
    de Paula RG; Antoniêto ACC; Ribeiro LFC; Srivastava N; O'Donovan A; Mishra PK; Gupta VK; Silva RN
    Biotechnol Adv; 2019 Nov; 37(6):107347. PubMed ID: 30771467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.