BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33501804)

  • 1. [Biosynthesis of 2,5-dimethylpyrazine from L-threonine by whole-cell biocatalyst of recombinant Escherichia coli].
    Yu H; Xu J; Liu L; Zhang W
    Sheng Wu Gong Cheng Xue Bao; 2021 Jan; 37(1):228-241. PubMed ID: 33501804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Engineering of
    Zeng M; Wu H; Han Z; Du Z; Yu X; Luo W
    J Agric Food Chem; 2024 Feb; 72(8):4267-4276. PubMed ID: 38369722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Escherichia coli for high-yielding 2,5-Dimethylpyrazine synthesis from L-Threonine by reconstructing metabolic pathways and enhancing cofactors regeneration.
    Liu XX; Wang Y; Zhang JH; Lu YF; Dong ZX; Yue C; Huang XQ; Zhang SP; Li DD; Yao LG; Tang CD
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):44. PubMed ID: 38500189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redistribution of Intracellular Metabolic Flow in
    Yang C; You J; Hu M; Yi G; Zhang R; Xu M; Shao M; Yang T; Zhang X; Rao Z
    J Agric Food Chem; 2021 Mar; 69(8):2512-2521. PubMed ID: 33522235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated Green Process of 2,5-Dimethylpyrazine Production from Glucose by Genetically Modified
    Xu J; Yu H; Chen X; Liu L; Zhang W
    ACS Synth Biol; 2020 Sep; 9(9):2576-2587. PubMed ID: 32841563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Alkylpyrazine Synthesis Mechanism Involving l-Threonine-3-Dehydrogenase Describes the Production of 2,5-Dimethylpyrazine and 2,3,5-Trimethylpyrazine by Bacillus subtilis.
    Zhang L; Cao Y; Tong J; Xu Y
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31585995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-yield and plasmid-free biocatalytic production of 5-methylpyrazine-2-carboxylic acid by combinatorial genetic elements engineering and genome engineering of Escherichia coli.
    Gu L; Yuan H; Lv X; Li G; Cong R; Li J; Du G; Liu L
    Enzyme Microb Technol; 2020 Mar; 134():109488. PubMed ID: 32044035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production.
    Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK
    Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli.
    Berríos-Rivera SJ; San KY; Bennett GN
    Metab Eng; 2002 Jul; 4(3):238-47. PubMed ID: 12616693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli.
    Yang J; Fang Y; Wang J; Wang C; Zhao L; Wang X
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4549-4564. PubMed ID: 31001742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor.
    Zhang C; Liu L; Teng L; Chen J; Liu J; Li J; Du G; Chen J
    Metab Eng; 2012 Sep; 14(5):521-7. PubMed ID: 22781283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step biosynthesis of α-keto-γ-methylthiobutyric acid from L-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered L-amino acid deaminase from Proteus vulgaris.
    Hossain GS; Li J; Shin HD; Du G; Wang M; Liu L; Chen J
    PLoS One; 2014; 9(12):e114291. PubMed ID: 25531756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel strategy for phenyllactic acid biosynthesis from phenylalanine by whole cell recombinant Escherichia coli coexpressing L-phenylalanine oxidase and L-lactate dehydrogenase.
    Zhang J; Li X
    Biotechnol Lett; 2018 Jan; 40(1):165-171. PubMed ID: 29038927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-stage carbon distribution and cofactor generation for improving l-threonine production of Escherichia coli.
    Liu J; Li H; Xiong H; Xie X; Chen N; Zhao G; Caiyin Q; Zhu H; Qiao J
    Biotechnol Bioeng; 2019 Jan; 116(1):110-120. PubMed ID: 30252940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression regulation of multiple key genes to improve L-threonine in Escherichia coli.
    Zhao L; Lu Y; Yang J; Fang Y; Zhu L; Ding Z; Wang C; Ma W; Hu X; Wang X
    Microb Cell Fact; 2020 Feb; 19(1):46. PubMed ID: 32093713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation.
    Theodosiou E; Frick O; Bühler B; Schmid A
    Microb Cell Fact; 2015 Jul; 14():108. PubMed ID: 26215086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway.
    Zhu L; Fang Y; Ding Z; Zhang S; Wang X
    Biotechnol Appl Biochem; 2019 Nov; 66(6):962-976. PubMed ID: 31486127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient production of myo-inositol in Escherichia coli through metabolic engineering.
    You R; Wang L; Shi C; Chen H; Zhang S; Hu M; Tao Y
    Microb Cell Fact; 2020 May; 19(1):109. PubMed ID: 32448266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis of an l-threonine-producing Escherichia coli TWF001.
    Zhao L; Zhang H; Wang X; Han G; Ma W; Hu X; Li Y
    Biotechnol Appl Biochem; 2020 May; 67(3):414-429. PubMed ID: 31976571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.