These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33501804)

  • 61. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation.
    Perez-Zabaleta M; Guevara-Martínez M; Gustavsson M; Quillaguamán J; Larsson G; van Maris AJA
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5627-5639. PubMed ID: 31104101
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Metabolic engineering of Escherichia coli for thymidine production].
    Li S; Li X; Chen T
    Sheng Wu Gong Cheng Xue Bao; 2015 Jan; 31(1):105-14. PubMed ID: 26021084
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhanced synthesis of L-threo-3,4-dihydroxyphenylserine by high-density whole-cell biocatalyst of recombinant L-threonine aldolase from Streptomyces avelmitilis.
    Baik SH; Yoshioka H
    Biotechnol Lett; 2009 Mar; 31(3):443-8. PubMed ID: 19039530
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.
    Chen L; Zeng AP
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):559-568. PubMed ID: 27599980
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-Level Conversion of l-lysine into Cadaverine by
    Kim HT; Baritugo KA; Oh YH; Kang KH; Jung YJ; Jang S; Song BK; Kim IK; Lee MO; Hwang YT; Park K; Park SJ; Joo JC
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31337154
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield.
    Piao X; Wang L; Lin B; Chen H; Liu W; Tao Y
    Metab Eng; 2019 Jul; 54():244-254. PubMed ID: 31063790
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli.
    Li Z; Xu J; Jiang T; Ge Y; Liu P; Zhang M; Su Z; Gao C; Ma C; Xu P
    Sci Rep; 2016 Aug; 6():30884. PubMed ID: 27510748
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways.
    Liu M; Lou J; Gu J; Lyu XM; Wang FQ; Wei DZ
    J Biotechnol; 2020 May; 314-315():1-7. PubMed ID: 32251699
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An antiphage Escherichia coli mutant for higher production of L-threonine obtained by atmospheric and room temperature plasma mutagenesis.
    Cheng L; Wang J; Zhao X; Yin H; Fang H; Lin C; Zhang S; Shen Z; Zhao C
    Biotechnol Prog; 2020 Nov; 36(6):e3058. PubMed ID: 32735374
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.
    Yang J; Guo L
    Microb Cell Fact; 2014 Nov; 13():160. PubMed ID: 25403509
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli.
    Ning Y; Wu X; Zhang C; Xu Q; Chen N; Xie X
    Metab Eng; 2016 Jul; 36():10-18. PubMed ID: 26969253
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced production of poly‑3‑hydroxybutyrate (PHB) by expression of response regulator DR1558 in recombinant Escherichia coli.
    Park SH; Kim GB; Kim HU; Park SJ; Choi JI
    Int J Biol Macromol; 2019 Jun; 131():29-35. PubMed ID: 30851327
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli.
    Wang Y; Xian M; Feng X; Liu M; Zhao G
    Bioengineered; 2018; 9(1):233-241. PubMed ID: 29865993
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Synthesis of L-2-aminobutyric acid by leucine dehydrogenase coupling with an NADH regeneration system].
    Zhang L; Xiao Y; Yang W; Hua C; Wang Y; Li J; Yang T
    Sheng Wu Gong Cheng Xue Bao; 2020 May; 36(5):992-1001. PubMed ID: 32567282
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions.
    Park SH; Sohn YJ; Park SJ; Choi JI
    Microb Cell Fact; 2020 Mar; 19(1):64. PubMed ID: 32156293
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.
    Wu W; Zhang Y; Liu D; Chen Z
    Metab Eng; 2019 Mar; 52():77-86. PubMed ID: 30458240
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Production of L-2-aminobutyric acid from L-threonine using a trienzyme cascade].
    Fu Y; Zhang J; Fu X; Xie Y; Ren H; Liu J; Chen X; Liu L
    Sheng Wu Gong Cheng Xue Bao; 2020 Apr; 36(4):782-791. PubMed ID: 32347072
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Metabolic engineering for improving L-tryptophan production in Escherichia coli.
    Niu H; Li R; Liang Q; Qi Q; Li Q; Gu P
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):55-65. PubMed ID: 30426284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.