BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33501916)

  • 1. A new model of decision processing in instrumental learning tasks.
    Miletić S; Boag RJ; Trutti AC; Stevenson N; Forstmann BU; Heathcote A
    Elife; 2021 Jan; 10():. PubMed ID: 33501916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling.
    Fontanesi L; Palminteri S; Lebreton M
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):490-502. PubMed ID: 31175616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reinforcement learning diffusion decision model for value-based decisions.
    Fontanesi L; Gluth S; Spektor MS; Rieskamp J
    Psychon Bull Rev; 2019 Aug; 26(4):1099-1121. PubMed ID: 30924057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual benefits: Combining reinforcement learning with sequential sampling models.
    Miletić S; Boag RJ; Forstmann BU
    Neuropsychologia; 2020 Jan; 136():107261. PubMed ID: 31733237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approaches to modeling gambling behaviour: Opportunities for understanding disordered gambling.
    Hales CA; Clark L; Winstanley CA
    Neurosci Biobehav Rev; 2023 Apr; 147():105083. PubMed ID: 36758827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
    Costa VD; Dal Monte O; Lucas DR; Murray EA; Averbeck BB
    Neuron; 2016 Oct; 92(2):505-517. PubMed ID: 27720488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond dichotomies in reinforcement learning.
    Collins AGE; Cockburn J
    Nat Rev Neurosci; 2020 Oct; 21(10):576-586. PubMed ID: 32873936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural signatures of experience-based improvements in deterministic decision-making.
    Tremel JJ; Laurent PA; Wolk DA; Wheeler ME; Fiez JA
    Behav Brain Res; 2016 Dec; 315():51-65. PubMed ID: 27523644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis.
    Collins AG; Frank MJ
    Eur J Neurosci; 2012 Apr; 35(7):1024-35. PubMed ID: 22487033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Index of Reinforcement Learning Predicts Improved Stimulus-Response Retention under High Working Memory Load.
    Rac-Lubashevsky R; Cremer A; Collins AGE; Frank MJ; Schwabe L
    J Neurosci; 2023 Apr; 43(17):3131-3143. PubMed ID: 36931706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning.
    Ziegler S; Pedersen ML; Mowinckel AM; Biele G
    Neurosci Biobehav Rev; 2016 Dec; 71():633-656. PubMed ID: 27608958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.
    Gershman SJ; Daw ND
    Annu Rev Psychol; 2017 Jan; 68():101-128. PubMed ID: 27618944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning.
    Frank MJ; Gagne C; Nyhus E; Masters S; Wiecki TV; Cavanagh JF; Badre D
    J Neurosci; 2015 Jan; 35(2):485-94. PubMed ID: 25589744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia.
    Collins AGE; Albrecht MA; Waltz JA; Gold JM; Frank MJ
    Biol Psychiatry; 2017 Sep; 82(6):431-439. PubMed ID: 28651789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the influence of working memory, reinforcement, and action uncertainty on reaction time and choice during instrumental learning.
    McDougle SD; Collins AGE
    Psychon Bull Rev; 2021 Feb; 28(1):20-39. PubMed ID: 32710256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalization of value in reinforcement learning by humans.
    Wimmer GE; Daw ND; Shohamy D
    Eur J Neurosci; 2012 Apr; 35(7):1092-104. PubMed ID: 22487039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MSPM: A modularized and scalable multi-agent reinforcement learning-based system for financial portfolio management.
    Huang Z; Tanaka F
    PLoS One; 2022; 17(2):e0263689. PubMed ID: 35180235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational evidence for hierarchically structured reinforcement learning in humans.
    Eckstein MK; Collins AGE
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29381-29389. PubMed ID: 33229518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.