These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33501916)

  • 1. A new model of decision processing in instrumental learning tasks.
    Miletić S; Boag RJ; Trutti AC; Stevenson N; Forstmann BU; Heathcote A
    Elife; 2021 Jan; 10():. PubMed ID: 33501916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling.
    Fontanesi L; Palminteri S; Lebreton M
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):490-502. PubMed ID: 31175616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reinforcement learning diffusion decision model for value-based decisions.
    Fontanesi L; Gluth S; Spektor MS; Rieskamp J
    Psychon Bull Rev; 2019 Aug; 26(4):1099-1121. PubMed ID: 30924057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning.
    Frank MJ; Gagne C; Nyhus E; Masters S; Wiecki TV; Cavanagh JF; Badre D
    J Neurosci; 2015 Jan; 35(2):485-94. PubMed ID: 25589744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutual benefits: Combining reinforcement learning with sequential sampling models.
    Miletić S; Boag RJ; Forstmann BU
    Neuropsychologia; 2020 Jan; 136():107261. PubMed ID: 31733237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational approaches to modeling gambling behaviour: Opportunities for understanding disordered gambling.
    Hales CA; Clark L; Winstanley CA
    Neurosci Biobehav Rev; 2023 Apr; 147():105083. PubMed ID: 36758827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
    Costa VD; Dal Monte O; Lucas DR; Murray EA; Averbeck BB
    Neuron; 2016 Oct; 92(2):505-517. PubMed ID: 27720488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond dichotomies in reinforcement learning.
    Collins AGE; Cockburn J
    Nat Rev Neurosci; 2020 Oct; 21(10):576-586. PubMed ID: 32873936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural signatures of experience-based improvements in deterministic decision-making.
    Tremel JJ; Laurent PA; Wolk DA; Wheeler ME; Fiez JA
    Behav Brain Res; 2016 Dec; 315():51-65. PubMed ID: 27523644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis.
    Collins AG; Frank MJ
    Eur J Neurosci; 2012 Apr; 35(7):1024-35. PubMed ID: 22487033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Index of Reinforcement Learning Predicts Improved Stimulus-Response Retention under High Working Memory Load.
    Rac-Lubashevsky R; Cremer A; Collins AGE; Frank MJ; Schwabe L
    J Neurosci; 2023 Apr; 43(17):3131-3143. PubMed ID: 36931706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning.
    Ziegler S; Pedersen ML; Mowinckel AM; Biele G
    Neurosci Biobehav Rev; 2016 Dec; 71():633-656. PubMed ID: 27608958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.
    Gershman SJ; Daw ND
    Annu Rev Psychol; 2017 Jan; 68():101-128. PubMed ID: 27618944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia.
    Collins AGE; Albrecht MA; Waltz JA; Gold JM; Frank MJ
    Biol Psychiatry; 2017 Sep; 82(6):431-439. PubMed ID: 28651789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the influence of working memory, reinforcement, and action uncertainty on reaction time and choice during instrumental learning.
    McDougle SD; Collins AGE
    Psychon Bull Rev; 2021 Feb; 28(1):20-39. PubMed ID: 32710256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalization of value in reinforcement learning by humans.
    Wimmer GE; Daw ND; Shohamy D
    Eur J Neurosci; 2012 Apr; 35(7):1092-104. PubMed ID: 22487039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MSPM: A modularized and scalable multi-agent reinforcement learning-based system for financial portfolio management.
    Huang Z; Tanaka F
    PLoS One; 2022; 17(2):e0263689. PubMed ID: 35180235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational evidence for hierarchically structured reinforcement learning in humans.
    Eckstein MK; Collins AGE
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29381-29389. PubMed ID: 33229518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.