These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 33501926)

  • 1. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions.
    Hess C
    Chem Soc Rev; 2021 Mar; 50(5):3519-3564. PubMed ID: 33501926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand.
    Ziemba M; Schilling C; Ganduglia-Pirovano MV; Hess C
    Acc Chem Res; 2021 Jul; 54(13):2884-2893. PubMed ID: 34137246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions.
    Kim H; Kosuda KM; Van Duyne RP; Stair PC
    Chem Soc Rev; 2010 Dec; 39(12):4820-44. PubMed ID: 20957272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Zhang H; Wang C; Sun HL; Fu G; Chen S; Zhang YJ; Chen BH; Anema JR; Yang ZL; Li JF; Tian ZQ
    Nat Commun; 2017 May; 8():15447. PubMed ID: 28537269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Raman Spectroscopy to Working Gas Sensors: From
    Elger AK; Hess C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31757112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions.
    Zaera F
    Chem Soc Rev; 2014 Nov; 43(22):7624-63. PubMed ID: 24424375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Single-Atom Catalysts and Catalytic Reaction Processes by Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy.
    Wei J; Qin SN; Yang J; Ya HL; Huang WH; Zhang H; Hwang BJ; Tian ZQ; Li JF
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9306-9310. PubMed ID: 33523581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally Stable TiO
    Hartman T; Weckhuysen BM
    Chemistry; 2018 Mar; 24(15):3733-3741. PubMed ID: 29388737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical Guidelines for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Heterogeneous Catalysts.
    Hartman T; Wondergem CS; Weckhuysen BM
    Chemphyschem; 2018 Oct; 19(19):2461-2467. PubMed ID: 29971926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy.
    Wachs IE; Roberts CA
    Chem Soc Rev; 2010 Dec; 39(12):5002-17. PubMed ID: 21038054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures.
    Su HS; Feng HS; Wu X; Sun JJ; Ren B
    Nanoscale; 2021 Sep; 13(33):13962-13975. PubMed ID: 34477677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operando Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of the NO Reduction Reaction over Rhodium-Based Catalysts.
    Ballotin FC; Hartman T; Koek J; Geitenbeek RG; Weckhuysen BM
    Chemphyschem; 2021 Aug; 22(15):1595-1602. PubMed ID: 34133834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy.
    Wang YH; Wei J; Radjenovic P; Tian ZQ; Li JF
    Anal Chem; 2019 Feb; 91(3):1675-1685. PubMed ID: 30629409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared and Raman imaging of heterogeneous catalysts.
    Stavitski E; Weckhuysen BM
    Chem Soc Rev; 2010 Dec; 39(12):4615-25. PubMed ID: 20938559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface- and Tip-Enhanced Raman Spectroscopy as Operando Probes for Monitoring and Understanding Heterogeneous Catalysis.
    Harvey CE; Weckhuysen BM
    Catal Letters; 2015; 145(1):40-57. PubMed ID: 26052185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.
    Zheng A; Li S; Liu SB; Deng F
    Acc Chem Res; 2016 Apr; 49(4):655-63. PubMed ID: 26990961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis.
    Hartman T; Wondergem CS; Kumar N; van den Berg A; Weckhuysen BM
    J Phys Chem Lett; 2016 Apr; 7(8):1570-84. PubMed ID: 27075515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Looking inside catalyst extrudates with time-resolved surface-enhanced Raman spectroscopy (TR-SERS).
    Harvey CE; Iping Petterson IE; Weckhuysen BM; Gooijer C; Ariese F; Mank AJ
    Appl Spectrosc; 2012 Oct; 66(10):1179-85. PubMed ID: 23031701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.