BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33502211)

  • 1. The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition Reaction of the TFSI and DOL Electrolyte at a Lithium-Metal Anode Surface.
    Liu Y; Yu P; Wu Y; Yang H; Xie M; Huai L; Goddard WA; Cheng T
    J Phys Chem Lett; 2021 Feb; 12(4):1300-1306. PubMed ID: 33502211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential decomposition of the major anion in a dual-salt electrolyte facilitates the formation of organic-inorganic composite solid electrolyte interphase.
    Qi F; Yu P; Zhou Q; Liu Y; Sun Q; Ma B; Ren X; Cheng T
    J Chem Phys; 2023 Mar; 158(10):104704. PubMed ID: 36922150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of High and Low Salt Concentrations in Electrolytes at Lithium-Metal Anode Surfaces Using DFT-ReaxFF Hybrid Molecular Dynamics Method.
    Liu Y; Sun Q; Yu P; Wu Y; Xu L; Yang H; Xie M; Cheng T; Goddard WA
    J Phys Chem Lett; 2021 Mar; 12(11):2922-2929. PubMed ID: 33725449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.
    Camacho-Forero LE; Balbuena PB
    Phys Chem Chem Phys; 2017 Nov; 19(45):30861-30873. PubMed ID: 29135003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into Spontaneous Solid Electrolyte Interphase Formation at Magnesium Metal Anode Surface from
    Agarwal G; Howard JD; Prabhakaran V; Johnson GE; Murugesan V; Mueller KT; Curtiss LA; Assary RS
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38816-38825. PubMed ID: 34362250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Simulations of the Microstructure Evolution of Solid Electrolyte Interphase during Cyclic Charging/Discharging.
    Yang PY; Pao CW
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5017-5027. PubMed ID: 33467849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries.
    Intan NN; Pfaendtner J
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8169-8180. PubMed ID: 33587593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes.
    Kamphaus EP; Angarita-Gomez S; Qin X; Shao M; Engelhard M; Mueller KT; Murugesan V; Balbuena PB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31467-31476. PubMed ID: 31368685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic dual electrolyte additives for fluoride rich solid-electrolyte interface on Li metal anode surface: Mechanistic understanding of electrolyte decomposition.
    Pan SH; Nachimuthu S; Hwang BJ; Brunklaus G; Jiang JC
    J Colloid Interface Sci; 2023 Nov; 649():804-814. PubMed ID: 37390528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT-ReaxFF hybrid molecular dynamics investigation of the decomposition effects of localized high-concentration electrolyte in lithium metal batteries: LiFSI/DME/TFEO.
    Lu Y; Sun Q; Liu Y; Yu P; Zhang Y; Lu J; Huang H; Yang H; Cheng T
    Phys Chem Chem Phys; 2022 Aug; 24(31):18684-18690. PubMed ID: 35895316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing ReaxFF for molecular dynamics simulations of lithium-ion batteries: an interactive reparameterization protocol.
    De Angelis P; Cappabianca R; Fasano M; Asinari P; Chiavazzo E
    Sci Rep; 2024 Jan; 14(1):978. PubMed ID: 38200063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Stable Solid Electrolyte Interphase for Magnesium Metal Anode Evolved from a Bulky Anion Lithium Salt.
    Tang K; Du A; Dong S; Cui Z; Liu X; Lu C; Zhao J; Zhou X; Cui G
    Adv Mater; 2020 Feb; 32(6):e1904987. PubMed ID: 31850607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study on thermodynamic stability of the hybrid interfacial structure of LiMn
    Choi D; Kang J; Park J; Han B
    Phys Chem Chem Phys; 2018 May; 20(17):11592-11597. PubMed ID: 29588999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes.
    Yu P; Sun Q; Liu Y; Ma B; Yang H; Xie M; Cheng T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7972-7979. PubMed ID: 35129322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field.
    Yun KS; Pai SJ; Yeo BC; Lee KR; Kim SJ; Han SS
    J Phys Chem Lett; 2017 Jul; 8(13):2812-2818. PubMed ID: 28593754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries.
    Shang Y; Chen N; Li Y; Chen S; Lai J; Huang Y; Qu W; Wu F; Chen R
    Adv Mater; 2020 Oct; 32(40):e2004017. PubMed ID: 32876955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent Degradation and Polymerization in the Li-Metal Battery: Organic-Phase Formation in Solid-Electrolyte Interphases.
    Kuai D; Balbuena PB
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2817-2824. PubMed ID: 34994191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium-electrolyte solvation and reaction in the electrolyte of a lithium ion battery: A ReaxFF reactive force field study.
    Hossain MJ; Pawar G; Liaw B; Gering KL; Dufek EJ; van Duin ACT
    J Chem Phys; 2020 May; 152(18):184301. PubMed ID: 32414258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z; Bertolini S; Balbuena PB; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.