These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 3350224)

  • 41. Application of in vivo confocal microscopy to the understanding of surfactant-induced ocular irritation.
    Jester JV; Maurer JK; Petroll WM; Wilkie DA; Parker RD; Cavanagh HD
    Toxicol Pathol; 1996; 24(4):412-28. PubMed ID: 8864183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of SV40 T-transformed human corneal epithelial cells to evaluate potential irritant chemicals for in vitro alternative eye toxicity.
    Kim CW; Park GT; Bae ON; Noh M; Choi KC
    J Pharmacol Toxicol Methods; 2016; 80():82-9. PubMed ID: 27233534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of eye irritation from organic chemicals using membrane-interaction QSAR analysis.
    Kulkarni A; Hopfinger AJ; Osborne R; Bruner LH; Thompson ED
    Toxicol Sci; 2001 Feb; 59(2):335-45. PubMed ID: 11158727
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CON4EI: Selection of the reference chemicals for hazard identification and labelling of eye irritating chemicals.
    Adriaens E; Alépée N; Kandarova H; Drzewieckac A; Gruszka K; Guest R; Willoughby JA; Verstraelen S; Van Rompay AR
    Toxicol In Vitro; 2017 Oct; 44():44-48. PubMed ID: 28595836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HET-CAM test for determining the possible eye irritancy of pesticides.
    Budai P; Lehel J; Tavaszi J; Kormos E
    Acta Vet Hung; 2010 Sep; 58(3):369-77. PubMed ID: 20713327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The use of HET-CAM test in detecting the ocular irritation.
    Tavaszi J; Budai P
    Commun Agric Appl Biol Sci; 2007; 72(2):137-41. PubMed ID: 18399434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Eye irritation responses in rabbit and man after single applications of equal volumes of undiluted model liquid detergent products.
    Roggeband R; York M; Pericoi M; Braun W
    Food Chem Toxicol; 2000 Aug; 38(8):727-34. PubMed ID: 10908820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cosmetics Europe compilation of historical serious eye damage/eye irritation in vivo data analysed by drivers of classification to support the selection of chemicals for development and evaluation of alternative methods/strategies: the Draize eye test Reference Database (DRD).
    Barroso J; Pfannenbecker U; Adriaens E; Alépée N; Cluzel M; De Smedt A; Hibatallah J; Klaric M; Mewes KR; Millet M; Templier M; McNamee P
    Arch Toxicol; 2017 Feb; 91(2):521-547. PubMed ID: 26997338
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The chicken enucleated eye test (CEET): a practical (pre)screen for the assessment of eye irritation/corrosion potential of test materials.
    Prinsen MK
    Food Chem Toxicol; 1996 Mar; 34(3):291-6. PubMed ID: 8621111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An in silico expert system for the identification of eye irritants.
    Verma RP; Matthews EJ
    SAR QSAR Environ Res; 2015; 26(5):383-95. PubMed ID: 25967253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hen egg chorioallantoic membrane bioassay: an in vitro alternative to draize eye irritation test for pesticide screening.
    Kishore AS; Surekha PA; Sekhar PV; Srinivas A; Murthy PB
    Int J Toxicol; 2008 Nov; 27(6):449-53. PubMed ID: 19482824
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Much work but slow going on alternatives to Draize test.
    Holden C
    Science; 1988 Oct; 242(4876):185-6. PubMed ID: 3175645
    [No Abstract]   [Full Text] [Related]  

  • 53. Quantification of contributions of molecular fragments for eye irritation of organic chemicals using QSAR study.
    Kar S; Roy K
    Comput Biol Med; 2014 May; 48():102-8. PubMed ID: 24657909
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparing and evaluating alternative (in vitro) tests on their ability to predict the Draize maximum average score.
    Lordo RA; Feder PI; Gettings SD
    Toxicol In Vitro; 1999 Feb; 13(1):45-72. PubMed ID: 20654467
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of the reconstructed rabbit corneal epithelium model to assess the in-vitro eye irritant test of chemicals.
    Matsuda S; Hisama M; Shibayama H; Itou N; Iwaki M
    Yakugaku Zasshi; 2009 Sep; 129(9):1113-20. PubMed ID: 19721387
    [TBL] [Abstract][Full Text] [Related]  

  • 56. IRAG working group 1. Organotypic models for the assessment/prediction of ocular irritation. Interagency Regulatory Alternatives Group.
    Chamberlain M; Gad SC; Gautheron P; Prinsen MK
    Food Chem Toxicol; 1997 Jan; 35(1):23-37. PubMed ID: 9100813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of the intra- and interlaboratory reproducibility of the low volume eye test and its statistical relationship to the Draize eye test.
    Cormier EM; Parker RD; Henson C; Cruse LW; Merritt AK; Bruce RD; Osborne R
    Regul Toxicol Pharmacol; 1996 Apr; 23(2):156-61. PubMed ID: 8661334
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of the eye irritation potential of shampoos using the in vitro SIRC cell toxicity test.
    North-Root H; Yackovich F; Demetrulias J; Gacula M; Heinze JE
    Food Chem Toxicol; 1985 Feb; 23(2):271-3. PubMed ID: 4040076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of PREDISAFE, a cell kit for predicting eye irritancy of cosmetic raw materials and formulations.
    Guyomard C; Bouffechoux J; Bourniche J; Chesné C
    Cell Biol Toxicol; 1994 Dec; 10(5-6):375-9. PubMed ID: 7697499
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extremely small sample size in some toxicity studies: an example from the rabbit eye irritation test.
    Liu PT
    Regul Toxicol Pharmacol; 2001 Apr; 33(2):187-91. PubMed ID: 11350201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.