These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 33502385)

  • 1. Corrigendum: Benchmark Datasets for Bilateral Lower-Limb Neuromechanical Signals from Wearable Sensors during Unassisted Locomotion in Able-Bodied Individuals.
    Hu B; Rouse E; Hargrove L
    Front Robot AI; 2018; 5():127. PubMed ID: 33502385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark Datasets for Bilateral Lower-Limb Neuromechanical Signals from Wearable Sensors during Unassisted Locomotion in Able-Bodied Individuals.
    Hu B; Rouse E; Hargrove L
    Front Robot AI; 2018; 5():14. PubMed ID: 33500901
    [No Abstract]   [Full Text] [Related]  

  • 3. Fusion of Bilateral Lower-Limb Neuromechanical Signals Improves Prediction of Locomotor Activities.
    Hu B; Rouse E; Hargrove L
    Front Robot AI; 2018; 5():78. PubMed ID: 33500957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor.
    Li H; Derrode S; Pieczynski W
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrigendum: [A Comparative Study of Adaptive Interlimb Coordination Mechanisms for Self-Organized Robot Locomotion].
    Sun T; Xiong X; Dai Z; Owaki D; Manoonpong P
    Front Robot AI; 2021; 8():702167. PubMed ID: 34150859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of foot and ankle immobilization on able-bodied gait as a model to increase understanding about bilateral transtibial amputee gait.
    Nepomuceno A; Major MJ; Stine R; Gard S
    Prosthet Orthot Int; 2017 Dec; 41(6):556-563. PubMed ID: 28318394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic neural network approach to targeted balance assessment of individuals with and without neurological disease during non-steady-state locomotion.
    Pickle NT; Shearin SM; Fey NP
    J Neuroeng Rehabil; 2019 Jul; 16(1):88. PubMed ID: 31300001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the neuromechanical events of locomotion at varying gravitational levels.
    Day MK; Monti RJ; Vallance K; McGuan S; Roy RR; Edgerton VR
    J Gravit Physiol; 2000 Jul; 7(2):P35-7. PubMed ID: 12697539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry and limb dominance in able-bodied gait: a review.
    Sadeghi H; Allard P; Prince F; Labelle H
    Gait Posture; 2000 Sep; 12(1):34-45. PubMed ID: 10996295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of accelerated body masses to able-bodied gait.
    Gillet C; Duboy J; Barbier F; Armand S; Jeddi R; Lepoutre FX; Allard P
    Am J Phys Med Rehabil; 2003 Feb; 82(2):101-9. PubMed ID: 12544755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Method for Locomotion Mode Identification Using Muscle Synergies.
    Afzal T; Iqbal K; White G; Wright AB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors.
    Phinyomark A; N Khushaba R; Scheme E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29783659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full body mobile brain-body imaging data during unconstrained locomotion on stairs, ramps, and level ground.
    Brantley JA; Luu TP; Nakagome S; Zhu F; Contreras-Vidal JL
    Sci Data; 2018 Jul; 5():180133. PubMed ID: 29989591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the Accuracy of Wearable Sensors for Human Locomotion Tracking Using Phase-Locked Regression Models.
    Duong TTH; Zhang H; Lynch TS; Zanotto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():145-150. PubMed ID: 31374621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Influence of Ambulatory Aid on Lower-Extremity Muscle Activation During Gait.
    Sanders M; Bowden AE; Baker S; Jensen R; Nichols M; Seeley MK
    J Sport Rehabil; 2018 May; 27(3):230-236. PubMed ID: 28422559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinematic synergy for terrestrial locomotion shared by mammals and birds.
    Catavitello G; Ivanenko Y; Lacquaniti F
    Elife; 2018 Oct; 7():. PubMed ID: 30376448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing Intent Changes in Exoskeleton-Assisted Walking Through Onboard Sensors.
    Gambon TM; Schmiedeler JP; Wensing PM
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():471-476. PubMed ID: 31374674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wearable comprehensive data sampling system for gait analysis.
    Fang Z; Yang Z; Wang Q; Wang C; Chen S
    J Med Eng Technol; 2018 Jul; 42(5):335-343. PubMed ID: 30324840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wearable sensor network for human locomotion data capture.
    Zambrano A; Derogarian F; Dias R; Abreu MJ; Catarino A; Rocha AM; Machado da Silva J; Canas Ferreira J; Grade Tavares V; Velhote Correia M
    Stud Health Technol Inform; 2012; 177():216-23. PubMed ID: 22942057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.