These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33502633)

  • 1. Molded Vial Manufacturing and Its Impact on Heat Transfer during Freeze-Drying: Vial Geometry Considerations.
    Wenzel T; Gieseler H
    AAPS PharmSciTech; 2021 Jan; 22(2):57. PubMed ID: 33502633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vial freeze-drying, part 1: new insights into heat transfer characteristics of tubing and molded vials.
    Hibler S; Wagner C; Gieseler H
    J Pharm Sci; 2012 Mar; 101(3):1189-201. PubMed ID: 22161688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Natural Variations in Freeze-Drying Parameters on Product Temperature History: Application of Quasi Steady-State Heat and Mass Transfer and Simple Statistics.
    Pikal MJ; Pande P; Bogner R; Sane P; Mudhivarthi V; Sharma P
    AAPS PharmSciTech; 2018 Oct; 19(7):2828-2842. PubMed ID: 30259404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-Drying Process Development and Scale-Up: Scale-Up of Edge Vial Versus Center Vial Heat Transfer Coefficients, K
    Pikal MJ; Bogner R; Mudhivarthi V; Sharma P; Sane P
    J Pharm Sci; 2016 Nov; 105(11):3333-3343. PubMed ID: 27666376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Aspects of Measuring the Vial Heat Transfer Coefficient in Pharmaceutical Freeze-Drying.
    Wegiel LA; Ferris SJ; Nail SL
    AAPS PharmSciTech; 2018 May; 19(4):1810-1817. PubMed ID: 29616490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying.
    Scutellà B; Passot S; Bourlés E; Fonseca F; Tréléa IC
    J Pharm Sci; 2017 Mar; 106(3):770-778. PubMed ID: 27939928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat transfer in vial lyophilization.
    Brülls M; Rasmuson A
    Int J Pharm; 2002 Oct; 246(1-2):1-16. PubMed ID: 12270604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process optimization and transfer of freeze-drying in nested vial systems.
    Ehlers S; Schroeder R; Friess W
    Eur J Pharm Biopharm; 2021 Feb; 159():143-150. PubMed ID: 33429009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat transfer characteristics of current primary packaging systems for pharmaceutical freeze-drying.
    Hibler S; Gieseler H
    J Pharm Sci; 2012 Nov; 101(11):4025-31. PubMed ID: 22893524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of product drying performance in molded and serum tubing vials using gentamicin sulfate as a model system.
    Hibler S; Wagner C; Gieseler H
    Pharm Dev Technol; 2012; 17(5):541-51. PubMed ID: 22734495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of vial heat transfer coefficients during the primary and secondary drying stages of freeze-drying.
    Yoon K; Narsimhan V
    Int J Pharm; 2023 Mar; 635():122746. PubMed ID: 36812952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of freeze-drying cycles: The determination of heat transfer coefficient by using heat flux sensor and MicroFD.
    Carfagna M; Rosa M; Hawe A; Frieß W
    Int J Pharm; 2022 Jun; 621():121763. PubMed ID: 35472509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vial Wall Effect on Freeze-Drying Speed.
    Ramšak M; Hriberšek M
    J Pharm Sci; 2024 May; 113(5):1275-1284. PubMed ID: 38070773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement.
    Tang XC; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006; 7(4):97. PubMed ID: 17285746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-drying in protective bags: Characterization of heat and mass transfer.
    Chamberlain R; Schlauersbach J; Erber M
    Eur J Pharm Biopharm; 2020 Sep; 154():309-316. PubMed ID: 32681964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of chamber wall temperature on energy transfer during freeze-drying.
    Ehlers S; Friess W; Schroeder R
    Int J Pharm; 2021 Jan; 592():120025. PubMed ID: 33137451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial.
    Pikal MJ; Roy ML; Shah S
    J Pharm Sci; 1984 Sep; 73(9):1224-37. PubMed ID: 6491939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.