BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 33502819)

  • 1. Synergistic effects of harvest and climate drive synchronous somatic growth within key New Zealand fisheries.
    Morrongiello JR; Horn PL; Ó Maolagáin C; Sutton PJH
    Glob Chang Biol; 2021 Apr; 27(7):1470-1484. PubMed ID: 33502819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fishing constrains phenotypic responses of marine fish to climate variability.
    Morrongiello JR; Sweetman PC; Thresher RE
    J Anim Ecol; 2019 Nov; 88(11):1645-1656. PubMed ID: 31034605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fishing in hot waters threatens phenotypic diversity.
    Aubry LM
    J Anim Ecol; 2019 Nov; 88(11):1642-1644. PubMed ID: 31691275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient demographic dynamics of recovering fish populations shaped by past climate variability, harvest, and management.
    Goto D
    Glob Chang Biol; 2023 Nov; 29(21):6018-6039. PubMed ID: 37655646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fishery catch is affected by geographic expansion, fishing down food webs and climate change in Aotearoa, New Zealand.
    Lavin CP; Pauly D; Dimarchopoulou D; Liang C; Costello MJ
    PeerJ; 2023; 11():e16070. PubMed ID: 37750081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchrony erodes spatial portfolios of an anadromous fish and alters availability for resource users.
    Sullaway GH; Shelton AO; Samhouri JF
    J Anim Ecol; 2021 Nov; 90(11):2692-2703. PubMed ID: 34553382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How long can fisheries management delay action in response to ecosystem and climate change?
    Brown CJ; Fulton EA; Possingham HP; Richardson AJ
    Ecol Appl; 2012 Jan; 22(1):298-310. PubMed ID: 22471091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended fisheries recovery timelines in a changing environment.
    Britten GL; Dowd M; Kanary L; Worm B
    Nat Commun; 2017 May; 8():15325. PubMed ID: 28524851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the ecosystem-level consequences of a small-scale artisanal kelp fishery within the context of climate-change.
    Krumhansl KA; Bergman JN; Salomon AK
    Ecol Appl; 2017 Apr; 27(3):799-813. PubMed ID: 27984678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A century of fish growth in relation to climate change, population dynamics and exploitation.
    Denechaud C; Smoliński S; Geffen AJ; Godiksen JA; Campana SE
    Glob Chang Biol; 2020 Oct; 26(10):5661-5678. PubMed ID: 32741054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional reorganization of marine fish nurseries under climate warming.
    McLean MJ; Mouillot D; Goascoz N; Schlaich I; Auber A
    Glob Chang Biol; 2019 Feb; 25(2):660-674. PubMed ID: 30367735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved management of small pelagic fisheries through seasonal climate prediction.
    Tommasi D; Stock CA; Pegion K; Vecchi GA; Methot RD; Alexander MA; Checkley DM
    Ecol Appl; 2017 Mar; 27(2):378-388. PubMed ID: 28221708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age structure affects population productivity in an exploited fish species.
    Ohlberger J; Langangen Ø; Stige LC
    Ecol Appl; 2022 Jul; 32(5):e2614. PubMed ID: 35365955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An uncertain future: Effects of ocean acidification and elevated temperature on a New Zealand snapper (Chrysophrys auratus) population.
    Parsons DM; Bian R; McKenzie JR; McMahon SJ; Pether S; Munday PL
    Mar Environ Res; 2020 Oct; 161():105089. PubMed ID: 32738554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting the dynamics of a coastal fishery species using a coupled climate--population model.
    Hare JA; Alexander MA; Fogarty MJ; Williams EH; Scott JD
    Ecol Appl; 2010 Mar; 20(2):452-64. PubMed ID: 20405799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change, fisheries management and fishing aptitude affecting spatial and temporal distributions of the Barents Sea cod fishery.
    Eide A
    Ambio; 2017 Dec; 46(Suppl 3):387-399. PubMed ID: 29076018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large biomass reduction effect on the relative role of climate, fishing, and recruitment on fish population dynamics.
    Durant JM; Holt RE; Langangen Ø
    Sci Rep; 2024 Apr; 14(1):8995. PubMed ID: 38637592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opportunities for climate-risk reduction through effective fisheries management.
    Cheung WWL; Jones MC; Reygondeau G; Frölicher TL
    Glob Chang Biol; 2018 Nov; 24(11):5149-5163. PubMed ID: 30141269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems.
    Woodworth-Jefcoats PA; Polovina JJ; Drazen JC
    Glob Chang Biol; 2017 Mar; 23(3):1000-1008. PubMed ID: 27545818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural habitat change, commercial fishing, climate, and dispersal interact to restructure an Alaskan fish metacommunity.
    Westley PA; Schindler DE; Quinn TP; Ruggerone GT; Hilborn R
    Oecologia; 2010 Jun; 163(2):471-84. PubMed ID: 20033215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.