These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33502874)

  • 1. Enhancing Vibrational Light-Matter Coupling Strength beyond the Molecular Concentration Limit Using Plasmonic Arrays.
    Hertzog M; Munkhbat B; Baranov D; Shegai T; Börjesson K
    Nano Lett; 2021 Feb; 21(3):1320-1326. PubMed ID: 33502874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanorod arrays as plasmonic cavity resonators.
    Lyvers DP; Moon JM; Kildishev AV; Shalaev VM; Wei A
    ACS Nano; 2008 Dec; 2(12):2569-76. PubMed ID: 19206293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity-Free Ultrastrong Light-Matter Coupling.
    Thomas PA; Menghrajani KS; Barnes WL
    J Phys Chem Lett; 2021 Jul; 12(29):6914-6918. PubMed ID: 34280306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes.
    Zakharko Y; Graf A; Zaumseil J
    Nano Lett; 2016 Oct; 16(10):6504-6510. PubMed ID: 27661764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Plasmonic Immunoassay Sensing.
    Kongsuwan N; Xiong X; Bai P; You JB; Png CE; Wu L; Hess O
    Nano Lett; 2019 Sep; 19(9):5853-5861. PubMed ID: 31356753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities.
    Fischer EW; Saalfrank P
    J Chem Phys; 2021 Mar; 154(10):104311. PubMed ID: 33722029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films.
    Brawley ZT; Storm SD; Contreras Mora DA; Pelton M; Sheldon M
    J Chem Phys; 2021 Mar; 154(10):104305. PubMed ID: 33722049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rise and Current Status of Polaritonic Photochemistry and Photophysics.
    Bhuyan R; Mony J; Kotov O; Castellanos GW; Gómez Rivas J; Shegai TO; Börjesson K
    Chem Rev; 2023 Sep; 123(18):10877-10919. PubMed ID: 37683254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Coupling beyond the Light-Line.
    Menghrajani KS; Barnes WL
    ACS Photonics; 2020 Sep; 7(9):2448-2459. PubMed ID: 33163580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-sensitivity biosensors fabricated by tailoring the localized surface plasmon resonance property of core-shell gold nanorods.
    Huang H; Huang S; Yuan S; Qu C; Chen Y; Xu Z; Liao B; Zeng Y; Chu PK
    Anal Chim Acta; 2011 Jan; 683(2):242-7. PubMed ID: 21167977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods.
    Zuo T; Goldwyn HJ; Isaacoff BP; Masiello DJ; Biteen JS
    J Phys Chem Lett; 2019 Sep; 10(17):5047-5054. PubMed ID: 31411474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundance of cavity-free polaritonic states in resonant materials and nanostructures.
    Canales A; Baranov DG; Antosiewicz TJ; Shegai T
    J Chem Phys; 2021 Jan; 154(2):024701. PubMed ID: 33445887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Coupling in Infrared Plasmonic Cavities.
    Mondal M; Semenov A; Ochoa MA; Nitzan A
    J Phys Chem Lett; 2022 Oct; 13(41):9673-9678. PubMed ID: 36215723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polariton Transitions in Femtosecond Transient Absorption Studies of Ultrastrong Light-Molecule Coupling.
    DelPo CA; Kudisch B; Park KH; Khan SU; Fassioli F; Fausti D; Rand BP; Scholes GD
    J Phys Chem Lett; 2020 Apr; 11(7):2667-2674. PubMed ID: 32186878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A plasmonic biosensor array exploiting plasmon coupling between gold nanorods and spheres for domoic acid detection via two methods.
    Nelis JLD; Salvador JP; Marco MP; Elliott CT; Campbell K
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119473. PubMed ID: 33524817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions.
    Zhang Y; Nelson T; Tretiak S
    J Chem Phys; 2019 Oct; 151(15):154109. PubMed ID: 31640366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Emission of Molecular Ensembles Strongly Coupled to Plasmonic Lattices with Structural Imperfections.
    Ramezani M; Le-Van Q; Halpin A; Gómez Rivas J
    Phys Rev Lett; 2018 Dec; 121(24):243904. PubMed ID: 30608720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.