These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33502874)

  • 21. Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry.
    Luk HL; Feist J; Toppari JJ; Groenhof G
    J Chem Theory Comput; 2017 Sep; 13(9):4324-4335. PubMed ID: 28749690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Label-free plasmonic detection of biomolecular binding by a single gold nanorod.
    Nusz GJ; Marinakos SM; Curry AC; Dahlin A; Höök F; Wax A; Chilkoti A
    Anal Chem; 2008 Feb; 80(4):984-9. PubMed ID: 18197636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling between molecular and plasmonic resonances in freestanding dye-gold nanorod hybrid nanostructures.
    Ni W; Yang Z; Chen H; Li L; Wang J
    J Am Chem Soc; 2008 May; 130(21):6692-3. PubMed ID: 18457390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Gold Nanoparticle to Plasmonic Biosensors.
    Lee JH; Cho HY; Choi HK; Lee JY; Choi JW
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29997363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit.
    Bahramipanah M; Dutta-Gupta S; Abasahl B; Martin OJ
    ACS Nano; 2015 Jul; 9(7):7621-33. PubMed ID: 26131684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays.
    Lee KL; Huang JB; Chang JW; Wu SH; Wei PK
    Sci Rep; 2015 Feb; 5():8547. PubMed ID: 25708955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy.
    Chamanzar M; Xia Z; Yegnanarayanan S; Adibi A
    Opt Express; 2013 Dec; 21(26):32086-98. PubMed ID: 24514803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Nanotechnology; 2012 Jul; 23(27):275201. PubMed ID: 22706495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vibrational Strong Coupling with Surface Plasmons and the Presence of Surface Plasmon Stop Bands.
    Menghrajani KS; Nash GR; Barnes WL
    ACS Photonics; 2019 Aug; 6(8):2110-2116. PubMed ID: 31475218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-scale dynamics simulations of molecular polaritons: The effect of multiple cavity modes on polariton relaxation.
    Tichauer RH; Feist J; Groenhof G
    J Chem Phys; 2021 Mar; 154(10):104112. PubMed ID: 33722041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions.
    Baranov DG; Munkhbat B; Zhukova E; Bisht A; Canales A; Rousseaux B; Johansson G; Antosiewicz TJ; Shegai T
    Nat Commun; 2020 Jun; 11(1):2715. PubMed ID: 32483151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fourier Transform Surface Plasmon Resonance (FTSPR) with Gyromagnetic Plasmonic Nanorods.
    Jung I; Yoo H; Jang HJ; Cho S; Lee K; Hong S; Park S
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1841-1845. PubMed ID: 29266670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays.
    Huang Y; Zhang X; Ringe E; Ma L; Zhai X; Wang L; Zhang Z
    Nanoscale; 2018 Mar; 10(9):4267-4275. PubMed ID: 29436546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modification of Enzyme Activity by Vibrational Strong Coupling of Water.
    Vergauwe RMA; Thomas A; Nagarajan K; Shalabney A; George J; Chervy T; Seidel M; Devaux E; Torbeev V; Ebbesen TW
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15324-15328. PubMed ID: 31449707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes.
    Weber D; Albella P; Alonso-González P; Neubrech F; Gui H; Nagao T; Hillenbrand R; Aizpurua J; Pucci A
    Opt Express; 2011 Aug; 19(16):15047-61. PubMed ID: 21934866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling.
    Ni W; Chen H; Su J; Sun Z; Wang J; Wu H
    J Am Chem Soc; 2010 Apr; 132(13):4806-14. PubMed ID: 20225866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Approach for plasmonic based DNA sensing: amplification of the wavelength shift and simultaneous detection of the plasmon modes of gold nanostructures.
    Spadavecchia J; Barras A; Lyskawa J; Woisel P; Laure W; Pradier CM; Boukherroub R; Szunerits S
    Anal Chem; 2013 Mar; 85(6):3288-96. PubMed ID: 23413826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.