BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 33504071)

  • 1. Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids.
    Kim MS; Kim DH; Kang HK; Kook MG; Choi SW; Kang KS
    Cells; 2021 Jan; 10(2):. PubMed ID: 33504071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids.
    Harbuzariu A; Pitts S; Cespedes JC; Harp KO; Nti A; Shaw AP; Liu M; Stiles JK
    Sci Rep; 2019 Dec; 9(1):19162. PubMed ID: 31844087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral organoids model human brain development and microcephaly.
    Lancaster MA; Renner M; Martin CA; Wenzel D; Bicknell LS; Hurles ME; Homfray T; Penninger JM; Jackson AP; Knoblich JA
    Nature; 2013 Sep; 501(7467):373-9. PubMed ID: 23995685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human 3D cellular model of hypoxic brain injury of prematurity.
    Pașca AM; Park JY; Shin HW; Qi Q; Revah O; Krasnoff R; O'Hara R; Willsey AJ; Palmer TD; Pașca SP
    Nat Med; 2019 May; 25(5):784-791. PubMed ID: 31061540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles.
    Logan S; Arzua T; Yan Y; Jiang C; Liu X; Yu LK; Liu QS; Bai X
    Cells; 2020 May; 9(5):. PubMed ID: 32456176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minocycline mitigates the effect of neonatal hypoxic insult on human brain organoids.
    Boisvert EM; Means RE; Michaud M; Madri JA; Katz SG
    Cell Death Dis; 2019 Apr; 10(4):325. PubMed ID: 30975982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Cytomegalovirus Compromises Development of Cerebral Organoids.
    Brown RM; Rana PSJB; Jaeger HK; O'Dowd JM; Balemba OB; Fortunato EA
    J Virol; 2019 Sep; 93(17):. PubMed ID: 31217239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human iNSC-derived brain organoid model of lysosomal storage disorder in Niemann-Pick disease type C.
    Lee SE; Shin N; Kook MG; Kong D; Kim NG; Choi SW; Kang KS
    Cell Death Dis; 2020 Dec; 11(12):1059. PubMed ID: 33311479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells.
    Yan Y; Song L; Bejoy J; Zhao J; Kanekiyo T; Bu G; Zhou Y; Li Y
    Tissue Eng Part A; 2018 Jul; 24(13-14):1125-1137. PubMed ID: 29361890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models.
    Kiaee K; Jodat YA; Bassous NJ; Matharu N; Shin SR
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Evolving Role of Induced Pluripotent Stem Cells and Cerebral Organoids in Treating and Modeling Neurosurgical Diseases.
    Jovanovich N; Habib A; Kodavali C; Edwards L; Amankulor N; Zinn PO
    World Neurosurg; 2021 Nov; 155():171-179. PubMed ID: 34454068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Herpes Simplex Virus 1 Infections in Human Central Nervous System Neuronal Cells Using Two- and Three-Dimensional Cultures Derived from Induced Pluripotent Stem Cells.
    D'Aiuto L; Bloom DC; Naciri JN; Smith A; Edwards TG; McClain L; Callio JA; Jessup M; Wood J; Chowdari K; Demers M; Abrahamson EE; Ikonomovic MD; Viggiano L; De Zio R; Watkins S; Kinchington PR; Nimgaonkar VL
    J Virol; 2019 May; 93(9):. PubMed ID: 30787148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central nervous system organoids for modeling neurodegenerative diseases.
    Hou PS; Kuo HC
    IUBMB Life; 2022 Aug; 74(8):812-825. PubMed ID: 35102668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Neuronal Activity and Asynchronous Calcium Transients Revealed in a 3D Organoid Model of Alzheimer's Disease.
    Yin J; VanDongen AM
    ACS Biomater Sci Eng; 2021 Jan; 7(1):254-264. PubMed ID: 33347288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Human Brain Organoids to Clinical Problems.
    Chen HI; Song H; Ming GL
    Dev Dyn; 2019 Jan; 248(1):53-64. PubMed ID: 30091290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organizing cortex generated from human iPSCs with combination of FGF2 and ambient oxygen.
    Eguchi N; Sora I; Muguruma K
    Biochem Biophys Res Commun; 2018 Apr; 498(4):729-735. PubMed ID: 29524419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascularization and Engraftment of Transplanted Human Cerebral Organoids in Mouse Cortex.
    Daviaud N; Friedel RH; Zou H
    eNeuro; 2018; 5(6):. PubMed ID: 30460331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.
    Allende ML; Cook EK; Larman BC; Nugent A; Brady JM; Golebiowski D; Sena-Esteves M; Tifft CJ; Proia RL
    J Lipid Res; 2018 Mar; 59(3):550-563. PubMed ID: 29358305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease.
    Li R; Sun L; Fang A; Li P; Wu Q; Wang X
    Protein Cell; 2017 Nov; 8(11):823-833. PubMed ID: 29058117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges in Modeling Human Neural Circuit Formation via Brain Organoid Technology.
    Matsui TK; Tsuru Y; Kuwako KI
    Front Cell Neurosci; 2020; 14():607399. PubMed ID: 33362473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.