These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 33504073)

  • 1. Learning-Based End-to-End Path Planning for Lunar Rovers with Safety Constraints.
    Yu X; Wang P; Zhang Z
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33504073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Learning Approach to Lunar Rover Global Path Planning Using Environmental Constraints and the Rover Internal Resource Status.
    Tanaka T; Malki H
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain.
    Sakayori G; Ishigami G
    Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Value Iteration Networks with Double Estimator for Planetary Rover Path Planning.
    Jin X; Lan W; Wang T; Yu P
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.
    Gao J; Ye W; Guo J; Li Z
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path Planning for Unmanned Surface Vehicles with Strong Generalization Ability Based on Improved Proximal Policy Optimization.
    Sun P; Yang C; Zhou X; Wang W
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning.
    Guo S; Zhang X; Zheng Y; Du AY
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
    Yu J; Su Y; Liao Y
    Front Neurorobot; 2020; 14():63. PubMed ID: 33132890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mapless Local Path Planning Approach Using Deep Reinforcement Learning Framework.
    Yin Y; Chen Z; Liu G; Guo J
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Path planning of mobile robot based on improved TD3 algorithm in dynamic environment.
    Li P; Chen D; Wang Y; Zhang L; Zhao S
    Heliyon; 2024 Jun; 10(11):e32167. PubMed ID: 38912483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on the Improvement of Semi-Global Matching Algorithm for Binocular Vision Based on Lunar Surface Environment.
    Guo YQ; Gu M; Xu ZD
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Improved Distributed Sampling PPO Algorithm Based on Beta Policy for Continuous Global Path Planning Scheme.
    Xiao Q; Jiang L; Wang M; Zhang X
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path Planning Research of a UAV Base Station Searching for Disaster Victims' Location Information Based on Deep Reinforcement Learning.
    Zhao J; Gan Z; Liang J; Wang C; Yue K; Li W; Li Y; Li R
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Path Planning for Mobile Robot Based on Deep Deterministic Policy Gradient.
    Gong H; Wang P; Ni C; Cheng N
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path Planning Algorithm for Unmanned Surface Vessel Based on Multiobjective Reinforcement Learning.
    Yang C; Zhao Y; Cai X; Wei W; Feng X; Zhou K
    Comput Intell Neurosci; 2023; 2023():2146314. PubMed ID: 36844696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End-to-End AUV Motion Planning Method Based on Soft Actor-Critic.
    Yu X; Sun Y; Wang X; Zhang G
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path Planning for Multi-Arm Manipulators Using Deep Reinforcement Learning: Soft Actor-Critic with Hindsight Experience Replay.
    Prianto E; Kim M; Park JH; Bae JH; Kim JS
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 2-year locomotive exploration and scientific investigation of the lunar farside by the Yutu-2 rover.
    Ding L; Zhou R; Yuan Y; Yang H; Li J; Yu T; Liu C; Wang J; Li S; Gao H; Deng Z; Li N; Wang Z; Gong Z; Liu G; Xie J; Wang S; Rong Z; Deng D; Wang X; Han S; Wan W; Richter L; Huang L; Gou S; Liu Z; Yu H; Jia Y; Chen B; Dang Z; Zhang K; Li L; He X; Liu S; Di K
    Sci Robot; 2022 Jan; 7(62):eabj6660. PubMed ID: 35044796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Artificial Potential Field Algorithm Assisted by Multisource Data for AUV Path Planning.
    Xing T; Wang X; Ding K; Ni K; Zhou Q
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.