These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 33504290)

  • 1. Genetic algorithm applied to simultaneous parameter estimation in bacterial growth.
    Pedrozo HA; Dallagnol AM; Schvezov CE
    J Bioinform Comput Biol; 2021 Feb; 19(1):2050045. PubMed ID: 33504290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese.
    Østergaard NB; Eklöw A; Dalgaard P
    Int J Food Microbiol; 2014 Oct; 188():15-25. PubMed ID: 25086348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Growth of Listeria and Lactic Acid Bacteria in Food Environments.
    Dalgaard P; Mejlholm O
    Methods Mol Biol; 2019; 1918():247-264. PubMed ID: 30580414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of Listeria monocytogenes in the presence or not of intentionally-added lactic acid bacteria during ripening of artisanal Minas semi-hard cheese.
    Gonzales-Barron U; Campagnollo FB; Schaffner DW; Sant'Ana AS; Cadavez VAP
    Food Microbiol; 2020 Oct; 91():103545. PubMed ID: 32539971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation via challenge test of a dynamic growth-death model for the prediction of Listeria monocytogenes kinetics in Pecorino di Farindola cheese.
    Centorotola G; Salini R; Sperandii AF; Neri D; Tucci P; Santarelli GA; Di Marzio V; Romantini R; Candeloro L; Conte A; Migliorati G; Pomilio F; Iannetti L
    Int J Food Microbiol; 2020 Sep; 329():108690. PubMed ID: 32497790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of dynamic tertiary and competition models for describing the fate of Listeria monocytogenes in Minas fresh cheese during refrigerated storage.
    Cadavez VAP; Campagnollo FB; Silva RA; Duffner CM; Schaffner DW; Sant'Ana AS; Gonzales-Barron U
    Food Microbiol; 2019 Jun; 79():48-60. PubMed ID: 30621875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon.
    Giménez B; Dalgaard P
    J Appl Microbiol; 2004; 96(1):96-109. PubMed ID: 14678163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistically Inspired Kinetic Approach to Describe Interactions During Co-Culture Growth of Carnobacterium maltaromaticum and Listeria monocytogenes.
    Pedrozo HA; Dallagnol AM; Vignolo GM; Pucciarelli AB; Schvezov CE
    J Food Sci; 2019 Sep; 84(9):2592-2602. PubMed ID: 31429485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures.
    Østergaard NB; Christiansen LE; Dalgaard P
    Int J Food Microbiol; 2015 Jul; 204():55-65. PubMed ID: 25847186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes.
    Pouillot R; Albert I; Cornu M; Denis JB
    Int J Food Microbiol; 2003 Mar; 81(2):87-104. PubMed ID: 12457583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes.
    Gysemans KP; Bernaerts K; Vermeulen A; Geeraerd AH; Debevere J; Devlieghere F; Van Impe JF
    Int J Food Microbiol; 2007 Mar; 114(3):316-31. PubMed ID: 17239980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model.
    Oguz C; Laomettachit T; Chen KC; Watson LT; Baumann WT; Tyson JJ
    BMC Syst Biol; 2013 Jun; 7():53. PubMed ID: 23809412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive microbiology models vs. modeling microbial growth within Listeria monocytogenes risk assessment: what parameters matter and why.
    Pouillot R; Lubran MB
    Food Microbiol; 2011 Jun; 28(4):720-6. PubMed ID: 21511132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the growth of Listeria monocytogenes on the surface of smear- or mold-ripened cheese.
    Schvartzman MS; Gonzalez-Barron U; Butler F; Jordan K
    Front Cell Infect Microbiol; 2014; 4():90. PubMed ID: 25072033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling microbial competition in food: application to the behavior of Listeria monocytogenes and lactic acid flora in pork meat products.
    Cornu M; Billoir E; Bergis H; Beaufort A; Zuliani V
    Food Microbiol; 2011 Jun; 28(4):639-47. PubMed ID: 21511123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of competition from non-pathogenic foodborne bacteria during the selective enrichment of Listeria monocytogenes using buffered Listeria enrichment broth.
    Dailey RC; Martin KG; Smiley RD
    Food Microbiol; 2014 Dec; 44():173-9. PubMed ID: 25084660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes in ground beef.
    Gomez JS; Parada RB; Vallejo M; Marguet ER; Bellomio A; Perotti N; de Carvalho KG
    Arch Microbiol; 2021 May; 203(4):1427-1437. PubMed ID: 33388790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical Model of Interaction Between Bacteriocin-Producing Lactic Acid Bacteria and Listeria. Part 2: Bifurcations and Applications.
    Delboni RR; Yang HM
    Bull Math Biol; 2017 Oct; 79(10):2273-2301. PubMed ID: 28799082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.