These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33504296)

  • 1. Abstinence from Chronic Methylphenidate Exposure Modifies Cannabinoid Receptor 1 Levels in the Brain in a Dose-dependent Manner.
    Connor C; Hamilton J; Robison L; Hadjiargyrou M; Komatsu D; Thanos P
    Curr Pharm Des; 2022; 28(4):331-338. PubMed ID: 33504296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic oral methylphenidate treatment increases microglial activation in rats.
    Carias E; Hamilton J; Robison LS; Delis F; Eiden R; Quattrin T; Hadjiargyrou M; Komatsu D; Thanos PK
    J Neural Transm (Vienna); 2018 Dec; 125(12):1867-1875. PubMed ID: 30238340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weekday-only chronic oral methylphenidate self-administration in male rats: Reversibility of the behavioral and physiological effects.
    Carias E; Fricke D; Vijayashanthar A; Smith L; Somanesan R; Martin C; Kalinowski L; Popoola D; Hadjiargyrou M; Komatsu DE; Thanos PK
    Behav Brain Res; 2019 Jan; 356():189-196. PubMed ID: 30149034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic oral methylphenidate treatment reversibly increases striatal dopamine transporter and dopamine type 1 receptor binding in rats.
    Robison LS; Ananth M; Hadjiargyrou M; Komatsu DE; Thanos PK
    J Neural Transm (Vienna); 2017 May; 124(5):655-667. PubMed ID: 28116523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brief and extended abstinence from chronic oral methylphenidate treatment produces reversible behavioral and physiological effects.
    Kalinowski L; Connor C; Somanesan R; Carias E; Richer K; Smith L; Martin C; Mackintosh M; Popoola D; Hadjiargyrou M; Komatsu DE; Thanos PK
    Dev Psychobiol; 2020 Mar; 62(2):170-180. PubMed ID: 31456229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abstinence following intermittent methylphenidate exposure dose-dependently modifies brain glucose metabolism in the rat brain.
    Arnavut E; Hamilton J; Yao R; Sajjad M; Hadjiargyrou M; Komatsu D; Thanos PK
    Synapse; 2022 Aug; 76(9-10):17-30. PubMed ID: 35730134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery from behavior and developmental effects of chronic oral methylphenidate following an abstinence period.
    Martin C; Fricke D; Vijayashanthar A; Lowinger C; Koutsomitis D; Popoola D; Hadjiargyrou M; Komatsu DE; Thanos PK
    Pharmacol Biochem Behav; 2018 Sep; 172():22-32. PubMed ID: 30030127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic treatment and abstinence from methylphenidate exposure dose-dependently changes glucose metabolism in the rat brain.
    Richer K; Hamilton J; Delis F; Martin C; Fricke D; Yao R; Sajjad M; Blum K; Hadjiargyrou M; Komatsu D; Thanos PK
    Brain Res; 2022 Apr; 1780():147799. PubMed ID: 35074404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior.
    Thanos PK; Robison LS; Steier J; Hwang YF; Cooper T; Swanson JM; Komatsu DE; Hadjiargyrou M; Volkow ND
    Pharmacol Biochem Behav; 2015 Apr; 131():143-53. PubMed ID: 25641666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic oral methylphenidate treatment in adolescent rats promotes dose-dependent effects on NMDA receptor binding.
    Jalloh K; Roeder N; Hamilton J; Delis F; Hadjiargyrou M; Komatsu D; Thanos PK
    Life Sci; 2021 Jan; 264():118708. PubMed ID: 33186568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex Differences in the Physiological and Behavioral Effects of Chronic Oral Methylphenidate Treatment in Rats.
    Robison LS; Michaelos M; Gandhi J; Fricke D; Miao E; Lam CY; Mauceri A; Vitale M; Lee J; Paeng S; Komatsu DE; Hadjiargyrou M; Thanos PK
    Front Behav Neurosci; 2017; 11():53. PubMed ID: 28400722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis.
    Cabranes A; Venderova K; de Lago E; Fezza F; Sánchez A; Mestre L; Valenti M; García-Merino A; Ramos JA; Di Marzo V; Fernández-Ruiz J
    Neurobiol Dis; 2005 Nov; 20(2):207-17. PubMed ID: 16242629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic aerobic exercise: Lack of effect on brain CB1 receptor levels in adult rats.
    Swenson S; Hamilton J; Robison L; Thanos PK
    Life Sci; 2019 Aug; 230():84-88. PubMed ID: 31128137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chronic exposure to delta9-tetrahydrocannabinol on cannabinoid receptor binding and mRNA levels in several rat brain regions.
    Romero J; Garcia-Palomero E; Castro JG; Garcia-Gil L; Ramos JA; Fernandez-Ruiz JJ
    Brain Res Mol Brain Res; 1997 Jun; 46(1-2):100-8. PubMed ID: 9191083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic exposure to methylphenidate impairs appendicular bone quality in young rats.
    Komatsu DE; Thanos PK; Mary MN; Janda HA; John CM; Robison L; Ananth M; Swanson JM; Volkow ND; Hadjiargyrou M
    Bone; 2012 Jun; 50(6):1214-22. PubMed ID: 22465849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington's disease.
    Lastres-Becker I; Berrendero F; Lucas JJ; Martín-Aparicio E; Yamamoto A; Ramos JA; Fernández-Ruiz JJ
    Brain Res; 2002 Mar; 929(2):236-42. PubMed ID: 11864629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cannabinoid modulation of cortical adrenergic receptors and transporters.
    Reyes BA; Rosario JC; Piana PM; Van Bockstaele EJ
    J Neurosci Res; 2009 Dec; 87(16):3671-8. PubMed ID: 19533736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex-specific alterations in hippocampal cannabinoid 1 receptor expression following adolescent delta-9-tetrahydrocannabinol treatment in the rat.
    Silva L; Harte-Hargrove L; Izenwasser S; Frank A; Wade D; Dow-Edwards D
    Neurosci Lett; 2015 Aug; 602():89-94. PubMed ID: 26118897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cannabinoid receptor and WIN-55,212-2-stimulated [35S]GTP gamma S binding and cannabinoid receptor mRNA levels in the basal ganglia and the cerebellum of adult male rats chronically exposed to delta 9-tetrahydrocannabinol.
    Romero J; Berrendero F; García-Gil L; Ramos JA; Fernández-Ruiz JJ
    J Mol Neurosci; 1998 Oct; 11(2):109-19. PubMed ID: 10096037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain kinetics of methylphenidate (Ritalin) enantiomers after oral administration.
    Ding YS; Gatley SJ; Thanos PK; Shea C; Garza V; Xu Y; Carter P; King P; Warner D; Taintor NB; Park DJ; Pyatt B; Fowler JS; Volkow ND
    Synapse; 2004 Sep; 53(3):168-75. PubMed ID: 15236349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.