These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 33504328)
1. Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. Jiang C; Li X; Zou J; Ren J; Jin C; Zhang H; Yu H; Jin H BMC Plant Biol; 2021 Jan; 21(1):64. PubMed ID: 33504328 [TBL] [Abstract][Full Text] [Related]
2. Identification and Expression Profile of Chen A; Li J; Wang H; Zhao P Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791604 [TBL] [Abstract][Full Text] [Related]
3. Genome-Wide Identification of Key Candidate microRNAs and Target Genes Associated with Peanut Drought Tolerance. Ren J; Zhang H; Shi X; Ai X; Dong J; Zhao X; Zhong C; Jiang C; Wang J; Yu H DNA Cell Biol; 2021 Feb; 40(2):373-383. PubMed ID: 33373540 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome analysis provides insights into the stress response in cultivated peanut (Arachis hypogaea L.) subjected to drought-stress. Gundaraniya SA; Ambalam PS; Budhwar R; Padhiyar SM; Tomar RS Mol Biol Rep; 2023 Aug; 50(8):6691-6701. PubMed ID: 37378750 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Zhao X; Li C; Wan S; Zhang T; Yan C; Shan S Mol Biol Rep; 2018 Apr; 45(2):119-131. PubMed ID: 29330721 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). Pruthvi V; Narasimhan R; Nataraja KN PLoS One; 2014; 9(12):e111152. PubMed ID: 25474740 [TBL] [Abstract][Full Text] [Related]
7. LncRNA-mediated ceRNA networks provide novel potential biomarkers for peanut drought tolerance. Ren J; Jiang C; Zhang H; Shi X; Ai X; Li R; Dong J; Wang J; Zhao X; Yu H Physiol Plant; 2022 Jan; 174(1):e13610. PubMed ID: 34888889 [TBL] [Abstract][Full Text] [Related]
8. Brassinosteroid Priming Improves Peanut Drought Tolerance via Eliminating Inhibition on Genes in Photosynthesis and Hormone Signaling. Huang L; Zhang L; Zeng R; Wang X; Zhang H; Wang L; Liu S; Wang X; Chen T Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32796553 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive genomic characterization of NAC transcription factor family and their response to salt and drought stress in peanut. Yuan C; Li C; Lu X; Zhao X; Yan C; Wang J; Sun Q; Shan S BMC Plant Biol; 2020 Oct; 20(1):454. PubMed ID: 33008287 [TBL] [Abstract][Full Text] [Related]
11. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress. Katam R; Sakata K; Suravajhala P; Pechan T; Kambiranda DM; Naik KS; Guo B; Basha SM J Proteomics; 2016 Jun; 143():209-226. PubMed ID: 27282920 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut. Ramu VS; Swetha TN; Sheela SH; Babitha CK; Rohini S; Reddy MK; Tuteja N; Reddy CP; Prasad TG; Udayakumar M Plant Biotechnol J; 2016 Mar; 14(3):1008-20. PubMed ID: 26383697 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome profiling reveals characteristics of hairy root and the role of AhGLK1 in response to drought stress and post-drought recovery in peanut. Liu X; Su L; Li L; Zhang Z; Li X; Liang Q; Li L BMC Genomics; 2023 Mar; 24(1):119. PubMed ID: 36927268 [TBL] [Abstract][Full Text] [Related]
14. Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus). An Y; Wang Q; Cui Y; Liu X; Wang P; Zhou Y; Kang P; Chen Y; Wang Z; Zhou Q; Wang P Sci Rep; 2024 Sep; 14(1):21060. PubMed ID: 39256456 [TBL] [Abstract][Full Text] [Related]
15. An abscisic acid (ABA) homeostasis regulated by its production, catabolism and transport in peanut leaves in response to drought stress. Long H; Zheng Z; Zhang Y; Xing P; Wan X; Zheng Y; Li L PLoS One; 2019; 14(6):e0213963. PubMed ID: 31242187 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome analysis reveals significant difference in gene expression and pathways between two peanut cultivars under Al stress. Xiao D; Li X; Zhou YY; Wei L; Keovongkod C; He H; Zhan J; Wang AQ; He LF Gene; 2021 May; 781():145535. PubMed ID: 33631240 [TBL] [Abstract][Full Text] [Related]
18. Unravelling the treasure trove of drought-responsive genes in wild-type peanut through transcriptomics and physiological analyses of root. Thoppurathu FJ; Ghorbanzadeh Z; Vala AK; Hamid R; Joshi M Funct Integr Genomics; 2022 Apr; 22(2):215-233. PubMed ID: 35195841 [TBL] [Abstract][Full Text] [Related]
19. Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. Li X; Lu J; Liu S; Liu X; Lin Y; Li L BMC Biotechnol; 2014 Jun; 14():58. PubMed ID: 24970488 [TBL] [Abstract][Full Text] [Related]
20. Proteomic profiling of Arachis hypogaea in response to drought stress and overexpression of AhLEA2 improves drought tolerance. Li C; Yan C; Sun Q; Wang J; Yuan C; Mou Y; Shan S; Zhao X Plant Biol (Stuttg); 2022 Jan; 24(1):75-84. PubMed ID: 34694687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]