These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33504584)

  • 1. Wing damage affects flight kinematics but not flower tracking performance in hummingbird hawkmoths.
    Kihlström K; Aiello B; Warrant E; Sponberg S; Stöckl A
    J Exp Biol; 2021 Feb; 224(Pt 4):. PubMed ID: 33504584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of two distinct strategies of moth flight.
    Aiello BR; Sikandar UB; Minoguchi H; Bhinderwala B; Hamilton CA; Kawahara AY; Sponberg S
    J R Soc Interface; 2021 Dec; 18(185):20210632. PubMed ID: 34847789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hawkmoth flight in the unsteady wakes of flowers.
    Matthews M; Sponberg S
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30291159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haemolymph viscosity in hawkmoths and its implications for hovering flight.
    Brasovs A; Palaoro AV; Aprelev P; Beard CE; Adler PH; Kornev KG
    Proc Biol Sci; 2023 Apr; 290(1997):20222185. PubMed ID: 37122259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect wing damage: causes, consequences and compensatory mechanisms.
    Rajabi H; Dirks JH; Gorb SN
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32366698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing wear reduces bumblebee flight performance in a dynamic obstacle course.
    Mountcastle AM; Alexander TM; Switzer CM; Combes SA
    Biol Lett; 2016 Jun; 12(6):. PubMed ID: 27303054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hovering flight in hummingbird hawkmoths: kinematics, wake dynamics and aerodynamic power.
    Warfvinge K; Johansson LC; Hedenström A
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34042974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular and biomechanical compensation for wing asymmetry in insect hovering flight.
    Fernández MJ; Springthorpe D; Hedrick TL
    J Exp Biol; 2012 Oct; 215(Pt 20):3631-8. PubMed ID: 22771747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatic signals control proboscis movements during hovering flight in the hummingbird hawkmoth Macroglossum stellatarum.
    Goyret J; Kelber A
    PLoS One; 2012; 7(4):e34629. PubMed ID: 22529922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of natural wing damage on flight performance in
    Le Roy C; Cornette R; Llaurens V; Debat V
    J Exp Biol; 2019 Aug; 222(Pt 16):. PubMed ID: 31371404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexibility and control of thorax deformation during hawkmoth flight.
    Ando N; Kanzaki R
    Biol Lett; 2016 Jan; 12(1):20150733. PubMed ID: 26740560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial tuning of translational optic flow responses in hawkmoths of varying body size.
    Grittner R; Baird E; Stöckl A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Mar; 208(2):279-296. PubMed ID: 34893928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects.
    Zhang C; Hedrick TL; Mittal R
    PLoS One; 2015; 10(8):e0132093. PubMed ID: 26252016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flight mechanics and control of escape manoeuvres in hummingbirds. II. Aerodynamic force production, flight control and performance limitations.
    Cheng B; Tobalske BW; Powers DR; Hedrick TL; Wang Y; Wethington SM; Chiu GT; Deng X
    J Exp Biol; 2016 Nov; 219(Pt 22):3532-3543. PubMed ID: 27595849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of lateral optic flow cues in hawkmoth flight control.
    Stöckl A; Grittner R; Pfeiffer K
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31196978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremely large sweep amplitude enables high wing loading in giant hovering insects.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2019 Sep; 14(6):066006. PubMed ID: 31434064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.