BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33504648)

  • 1. Toward robust mammography-based models for breast cancer risk.
    Yala A; Mikhael PG; Strand F; Lin G; Smith K; Wan YL; Lamb L; Hughes K; Lehman C; Barzilay R
    Sci Transl Med; 2021 Jan; 13(578):. PubMed ID: 33504648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model.
    Yala A; Mikhael PG; Strand F; Lin G; Satuluru S; Kim T; Banerjee I; Gichoya J; Trivedi H; Lehman CD; Hughes K; Sheedy DJ; Matthis LM; Karunakaran B; Hegarty KE; Sabino S; Silva TB; Evangelista MC; Caron RF; Souza B; Mauad EC; Patalon T; Handelman-Gotlib S; Guindy M; Barzilay R
    J Clin Oncol; 2022 Jun; 40(16):1732-1740. PubMed ID: 34767469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction.
    Yala A; Lehman C; Schuster T; Portnoi T; Barzilay R
    Radiology; 2019 Jul; 292(1):60-66. PubMed ID: 31063083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing risk-based breast cancer screening policies with reinforcement learning.
    Yala A; Mikhael PG; Lehman C; Lin G; Strand F; Wan YL; Hughes K; Satuluru S; Kim T; Banerjee I; Gichoya J; Trivedi H; Barzilay R
    Nat Med; 2022 Jan; 28(1):136-143. PubMed ID: 35027757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning vs Traditional Breast Cancer Risk Models to Support Risk-Based Mammography Screening.
    Lehman CD; Mercaldo S; Lamb LR; King TA; Ellisen LW; Specht M; Tamimi RM
    J Natl Cancer Inst; 2022 Oct; 114(10):1355-1363. PubMed ID: 35876790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AsymMirai: Interpretable Mammography-based Deep Learning Model for 1-5-year Breast Cancer Risk Prediction.
    Donnelly J; Moffett L; Barnett AJ; Trivedi H; Schwartz F; Lo J; Rudin C
    Radiology; 2024 Mar; 310(3):e232780. PubMed ID: 38501952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. External Evaluation of a Mammography-based Deep Learning Model for Predicting Breast Cancer in an Ethnically Diverse Population.
    Omoleye OJ; Woodard AE; Howard FM; Zhao F; Yoshimatsu TF; Zheng Y; Pearson AT; Levental M; Aribisala BS; Kulkarni K; Karczmar GS; Olopade OI; Abe H; Huo D
    Radiol Artif Intell; 2023 Nov; 5(6):e220299. PubMed ID: 38074785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction.
    Dembrower K; Liu Y; Azizpour H; Eklund M; Smith K; Lindholm P; Strand F
    Radiology; 2020 Feb; 294(2):265-272. PubMed ID: 31845842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer.
    Becker AS; Marcon M; Ghafoor S; Wurnig MC; Frauenfelder T; Boss A
    Invest Radiol; 2017 Jul; 52(7):434-440. PubMed ID: 28212138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets.
    Ueda D; Yamamoto A; Onoda N; Takashima T; Noda S; Kashiwagi S; Morisaki T; Fukumoto S; Shiba M; Morimura M; Shimono T; Kageyama K; Tatekawa H; Murai K; Honjo T; Shimazaki A; Kabata D; Miki Y
    PLoS One; 2022; 17(3):e0265751. PubMed ID: 35324962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated breast cancer risk assessment and management model based on fuzzy cognitive maps.
    Subramanian J; Karmegam A; Papageorgiou E; Papandrianos N; Vasukie A
    Comput Methods Programs Biomed; 2015 Mar; 118(3):280-97. PubMed ID: 25697987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms.
    Akselrod-Ballin A; Chorev M; Shoshan Y; Spiro A; Hazan A; Melamed R; Barkan E; Herzel E; Naor S; Karavani E; Koren G; Goldschmidt Y; Shalev V; Rosen-Zvi M; Guindy M
    Radiology; 2019 Aug; 292(2):331-342. PubMed ID: 31210611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion of Endogenous Plasma Dehydroepiandrosterone Sulfate and Mammographic Density in Risk Prediction Models for Breast Cancer.
    Gabrielson M; Ubhayasekera KA; Acharya SR; Franko MA; Eriksson M; Bergquist J; Czene K; Hall P
    Cancer Epidemiol Biomarkers Prev; 2020 Mar; 29(3):574-581. PubMed ID: 31948996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence Risk Model (Mirai) Delivers Robust Generalization and Outperforms Tyrer-Cuzick Guidelines in Breast Cancer Screening.
    Jin Z; Zhang S; Zhang L; Chen Q; Liu S; Zhang B
    J Clin Oncol; 2022 Jul; 40(20):2280-2281. PubMed ID: 35452262
    [No Abstract]   [Full Text] [Related]  

  • 16. Assessing the breast cancer risk distribution for women undergoing screening in British Columbia.
    Weisstock CR; Rajapakshe R; Bitgood C; McAvoy S; Gordon PB; Coldman AJ; Parker BA; Wilson C
    Cancer Prev Res (Phila); 2013 Oct; 6(10):1084-92. PubMed ID: 23963801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Analysis of Mammography for Breast Cancer Risk Prediction in Asian Women.
    Kim H; Lim J; Kim HG; Lim Y; Seo BK; Bae MS
    Diagnostics (Basel); 2023 Jul; 13(13):. PubMed ID: 37443642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Tyrer-Cuzick Model Inaccurately Predicts Invasive Breast Cancer Risk in Women With LCIS.
    Valero MG; Zabor EC; Park A; Gilbert E; Newman A; King TA; Pilewskie ML
    Ann Surg Oncol; 2020 Mar; 27(3):736-740. PubMed ID: 31559544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of adding breast density to breast cancer risk models: A systematic review.
    Vilmun BM; Vejborg I; Lynge E; Lillholm M; Nielsen M; Nielsen MB; Carlsen JF
    Eur J Radiol; 2020 Jun; 127():109019. PubMed ID: 32361308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Few-shot learning with deformable convolution for multiscale lesion detection in mammography.
    Li C; Zhang D; Tian Z; Du S; Qu Y
    Med Phys; 2020 Jul; 47(7):2970-2985. PubMed ID: 32160321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.