These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33504697)

  • 21. Cyanide removal from industrial wastewater by cross-flow nanofiltration: transport modeling and economic evaluation.
    Pal P; Bhakta P; Kumar R
    Water Environ Res; 2014 Aug; 86(8):698-706. PubMed ID: 25306785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor.
    Lay-Son M; Drakides C
    Water Res; 2008 Feb; 42(3):774-80. PubMed ID: 17888485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive review on wastewater discharged from the coal-related industries - characteristics and treatment strategies.
    Maiti D; Ansari I; Rather MA; Deepa A
    Water Sci Technol; 2019 Jun; 79(11):2023-2035. PubMed ID: 31318340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced oxidation processes with coke plant wastewater treatment.
    Krzywicka A; Kwarciak-Kozłowska A
    Water Sci Technol; 2014; 69(9):1875-8. PubMed ID: 24804662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorption and desorption of iron-cyanide complexes in deposited blast furnace sludge.
    Rennert T; Mansfeldt T
    Water Res; 2002 Nov; 36(19):4877-83. PubMed ID: 12448531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toxicity of cyanide, iron-cyanide complexes, and a blast furnace effluent to larvae of the doughboy scallop, Chlamys asperrimus.
    Pablo F; Buckeny RT; Lim RP
    Bull Environ Contam Toxicol; 1997 Jan; 58(1):93-100. PubMed ID: 8952931
    [No Abstract]   [Full Text] [Related]  

  • 27. Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process.
    Li J; Yuan X; Zhao H; Li F; Lei Z; Zhang Z
    Bioresour Technol; 2018 Jan; 247():1206-1209. PubMed ID: 28919474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen removal from coke making wastewater through a pre-denitrification activated sludge process.
    Raper E; Fisher R; Anderson DR; Stephenson T; Soares A
    Sci Total Environ; 2019 May; 666():31-38. PubMed ID: 30784820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coke dust enhances coke plant wastewater treatment.
    Burmistrz P; Rozwadowski A; Burmistrz M; Karcz A
    Chemosphere; 2014 Dec; 117():278-84. PubMed ID: 25113994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical fingerprinting of organic micropollutants in different industrial treated wastewater effluents and their effluent-receiving river.
    Liu M; Lv J; Qin C; Zhang H; Wu L; Guo W; Guo C; Xu J
    Sci Total Environ; 2022 Sep; 838(Pt 4):156399. PubMed ID: 35660429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Total Cyanide Field Spikes for Industrial Wastewater Samples Verify Successful Sample Integrity, Preservation, Pre-Treatment and Testing.
    Delaney MF; Blodget C
    Water Environ Res; 2015 Jun; 87(6):559-66. PubMed ID: 26459824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological treatment of coke plant effluents: from a microbiological perspective.
    Felföldi T; Nagymáté Z; Székely AJ; Jurecska L; Márialigeti K
    Biol Futur; 2020 Dec; 71(4):359-370. PubMed ID: 34554459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation.
    Luque-Almagro VM; Cabello P; Sáez LP; Olaya-Abril A; Moreno-Vivián C; Roldán MD
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1067-1074. PubMed ID: 29209795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytoremediation Potential of Duckweed (Lemna minor L.) On Steel Wastewater.
    Saha P; Banerjee A; Sarkar S
    Int J Phytoremediation; 2015; 17(1-6):589-96. PubMed ID: 25192438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ photodecyanation of steel industry wastewater in a pilot scale.
    Biswas P; Bhunia P; Saha P; Sarkar S; Chandel H; De S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):33226-33233. PubMed ID: 32529620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ferrate(VI) oxidation of weak-acid dissociable cyanides.
    Yngard RA; Sharma VK; Filip J; Zboril R
    Environ Sci Technol; 2008 Apr; 42(8):3005-10. PubMed ID: 18497158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Isolation of an aboriginal bacterial community capable of utilizing cyanide, thiocyanate, and ammonia from metallurgical plant wastewater].
    Grigor'eva NV; Smirnova IuV; Terekhova SV; Karavaĭko GI
    Prikl Biokhim Mikrobiol; 2008; 44(5):554-8. PubMed ID: 18822775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.
    Cema G; Żabczyński S; Ziembińska-Buczyńska A
    Water Sci Technol; 2016; 73(5):1202-10. PubMed ID: 26942544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upflow anaerobic sludge blanket treatment of starch wastewater containing cyanide.
    Annachhatre AP; Amornkaew A
    Water Environ Res; 2001; 73(5):622-32. PubMed ID: 11765999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic pollution removal from coke plant wastewater using coking coal.
    Gao L; Li S; Wang Y; Sun H
    Water Sci Technol; 2015; 72(1):158-63. PubMed ID: 26114284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.