BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33504703)

  • 1. Optimization of the adsorption of diclofenac by activated carbon and the acidic regeneration of spent activated carbon.
    Genç N; Durna E; Erkişi E
    Water Sci Technol; 2021 Jan; 83(2):396-408. PubMed ID: 33504703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The preference of the most appropriate radical-based regeneration process for spent activated carbon by the PROMETHEE approach.
    Genç N; Durna E; Kacıra E
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5240-5255. PubMed ID: 34417697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between two forms of granular activated carbon for the removal of pharmaceuticals from different waters.
    Lima L; Baêta BE; Lima DR; Afonso RJ; de Aquino SF; Libânio M
    Environ Technol; 2016; 37(11):1334-45. PubMed ID: 26584017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol.
    Alvarez PM; Beltrán FJ; Gómez-Serrano V; Jaramillo J; Rodríguez EM
    Water Res; 2004 Apr; 38(8):2155-65. PubMed ID: 15087197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle.
    Sonmez Baghirzade B; Zhang Y; Reuther JF; Saleh NB; Venkatesan AK; Apul OG
    Environ Sci Technol; 2021 May; 55(9):5608-5619. PubMed ID: 33881842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of per- and polyfluoroalkyl substance-laden granular activated carbon using a solvent based technology.
    Siriwardena DP; James R; Dasu K; Thorn J; Iery RD; Pala F; Schumitz D; Eastwood S; Burkitt N
    J Environ Manage; 2021 Jul; 289():112439. PubMed ID: 33819657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: Experimental and adsorption mechanism study.
    Xu H; Zhu S; Xia M; Wang F
    J Hazard Mater; 2021 Jan; 402():123815. PubMed ID: 33254805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of trace organic pollutants (pharmaceuticals and pesticides) and reduction of biological effects from secondary effluent by typical granular activated carbon.
    Tang L; Ma XY; Wang Y; Zhang S; Zheng K; Wang XC; Lin Y
    Sci Total Environ; 2020 Dec; 749():141611. PubMed ID: 32827814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective adsorption of diclofenac sodium from neutral aqueous solution by low-cost lignite activated cokes.
    Wu L; Du C; He J; Yang Z; Li H
    J Hazard Mater; 2020 Feb; 384():121284. PubMed ID: 31628061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of granular activated carbon surface by chitosan coating for geosmin removal: sorption performances.
    Vinitnantharat S; Rattanasirisophon W; Ishibashi Y
    Water Sci Technol; 2007; 55(5):145-52. PubMed ID: 17489404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persulfate oxidation regeneration of granular activated carbon: reversible impacts on sorption behavior.
    Hutson A; Ko S; Huling SG
    Chemosphere; 2012 Nov; 89(10):1218-23. PubMed ID: 22921651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma.
    Qu GZ; Lu N; Li J; Wu Y; Li GF; Li D
    J Hazard Mater; 2009 Dec; 172(1):472-8. PubMed ID: 19656621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending granular activated carbon (GAC) bed life: A column study of in-situ chemical regeneration of pesticide loaded activated carbon for water treatment.
    Larasati A; Fowler GD; Graham NJD
    Chemosphere; 2022 Jan; 286(Pt 3):131888. PubMed ID: 34418652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst.
    Chiu CA; Hristovski K; Huling S; Westerhoff P
    Water Res; 2013 Mar; 47(4):1596-603. PubMed ID: 23298638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ozone regeneration of granular activated carbon for trihalomethane control.
    He X; Elkouz M; Inyang M; Dickenson E; Wert EC
    J Hazard Mater; 2017 Mar; 326():101-109. PubMed ID: 28011354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant.
    Piai L; Blokland M; van der Wal A; Langenhoff A
    J Hazard Mater; 2020 Apr; 388():122028. PubMed ID: 31955023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave regeneration of granular activated carbon saturated with PFAS.
    Gagliano E; Falciglia PP; Zaker Y; Karanfil T; Roccaro P
    Water Res; 2021 Jun; 198():117121. PubMed ID: 33910144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melamine degradation to bioregenerate granular activated carbon.
    Piai L; van der Wal A; Boelee N; Langenhoff A
    J Hazard Mater; 2021 Jul; 414():125503. PubMed ID: 33676259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process.
    Chang SH; Wang KS; Liang HH; Chen HY; Li HC; Peng TH; Su YC; Chang CY
    J Hazard Mater; 2010 Mar; 175(1-3):850-7. PubMed ID: 19932556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.