These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33504827)

  • 21. High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines.
    Torres-Castro K; Honrado C; Varhue WB; Farmehini V; Swami NS
    Anal Bioanal Chem; 2020 Jun; 412(16):3847-3857. PubMed ID: 32128645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling cell destruction using dielectrophoretic forces.
    Menachery A; Pethig R
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):145-9. PubMed ID: 16441171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screen-printed microfluidic dielectrophoresis chip for cell separation.
    Zhu H; Lin X; Su Y; Dong H; Wu J
    Biosens Bioelectron; 2015 Jan; 63():371-378. PubMed ID: 25127471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel.
    Zhou T; Ge J; Shi L; Fan J; Liu Z; Woo Joo S
    Electrophoresis; 2018 Feb; 39(4):590-596. PubMed ID: 29193170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid, automated measurement of dielectrophoretic forces using DEP-activated microwells.
    Broche LM; Hoettges KF; Ogin SL; Kass GE; Hughes MP
    Electrophoresis; 2011 Sep; 32(17):2393-9. PubMed ID: 21800330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells.
    Gagnon ZR
    Electrophoresis; 2011 Sep; 32(18):2466-87. PubMed ID: 21922493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous isolation and label-free identification of bacteria using contactless dielectrophoresis and Raman spectroscopy.
    Hanson C; Barney JT; Bishop MM; Vargis E
    Electrophoresis; 2019 May; 40(10):1446-1456. PubMed ID: 30892709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dielectrophoresis-field flow fractionation for separation of particles: A critical review.
    Waheed W; Sharaf OZ; Alazzam A; Abu-Nada E
    J Chromatogr A; 2021 Jan; 1637():461799. PubMed ID: 33385744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining.
    Zeinali S; Çetin B; Oliaei SN; Karpat Y
    Electrophoresis; 2015 Jul; 36(13):1432-42. PubMed ID: 25808433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternation of Gene Expression Levels in Mesenchymal Stem Cells by Applying Positive Dielectrophoresis.
    Yoshioka J; Yoshitomi T; Yasukawa T; Yoshimoto K
    Anal Sci; 2016; 32(11):1213-1216. PubMed ID: 27829628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfabrication technologies in dielectrophoresis applications--a review.
    Martinez-Duarte R
    Electrophoresis; 2012 Nov; 33(21):3110-32. PubMed ID: 22941778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of dielectrophoretic particle motion: Point particle versus finite-sized particle.
    Çetin B; Öner SD; Baranoğlu B
    Electrophoresis; 2017 Jun; 38(11):1407-1418. PubMed ID: 28164365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dielectrophoresis-based 3D-focusing of microscale entities in microfluidic devices.
    Alnaimat F; Ramesh S; Alazzam A; Hilal-Alnaqbi A; Waheed W; Mathew B
    Cytometry A; 2018 Aug; 93(8):811-821. PubMed ID: 30160818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation.
    Luo T; Fan L; Zeng Y; Liu Y; Chen S; Tan Q; Lam RHW; Sun D
    Lab Chip; 2018 May; 18(11):1521-1532. PubMed ID: 29725680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AC dielectrophoretic deformable particle-particle interactions and their relative motions.
    Zhou T; Ji X; Shi L; Zhang X; Song Y; Joo SW
    Electrophoresis; 2020 Jun; 41(10-11):952-958. PubMed ID: 31529708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells.
    S Iliescu F; Sim WJ; Heidari H; P Poenar D; Miao J; Taylor HK; Iliescu C
    Electrophoresis; 2019 May; 40(10):1457-1477. PubMed ID: 30676660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dielectrophoresis in a slanted microchannel for separation of microparticles and bacteria.
    Nam SW; Kim SH; Park JK; Park S
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7993-7. PubMed ID: 24266178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contactless dielectrophoresis: a new technique for cell manipulation.
    Shafiee H; Caldwell JL; Sano MB; Davalos RV
    Biomed Microdevices; 2009 Oct; 11(5):997-1006. PubMed ID: 19415498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.