These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 33505205)
1. Enhanced Microencapsulation of C-Phycocyanin from Pan-Utai W; Iamtham S Food Technol Biotechnol; 2020 Dec; 58(4):423-432. PubMed ID: 33505205 [TBL] [Abstract][Full Text] [Related]
2. Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Rezende YRRS; Nogueira JP; Narain N Food Chem; 2018 Jul; 254():281-291. PubMed ID: 29548455 [TBL] [Abstract][Full Text] [Related]
3. Microencapsulation by spray-drying and freeze-drying of extract of phenolic compounds obtained from ciriguela peel. da Silva Júnior ME; Araújo MVRL; Martins ACS; Dos Santos Lima M; da Silva FLH; Converti A; Maciel MIS Sci Rep; 2023 Sep; 13(1):15222. PubMed ID: 37709786 [TBL] [Abstract][Full Text] [Related]
4. Freeze-Drying Microencapsulation of Hop Extract: Effect of Carrier Composition on Physical, Techno-Functional, and Stability Properties. Tatasciore S; Santarelli V; Neri L; González Ortega R; Faieta M; Di Mattia CD; Di Michele A; Pittia P Antioxidants (Basel); 2023 Feb; 12(2):. PubMed ID: 36830001 [TBL] [Abstract][Full Text] [Related]
5. Encapsulation of phenolic and antioxidant compounds from spent coffee grounds using spray-drying and freeze-drying and characterization of dried powders. Araújo CDS; Vimercati WC; Macedo LL; Saraiva SH; Teixeira LJQ; da Costa JMG; Pimenta CJ J Food Sci; 2022 Sep; 87(9):4056-4067. PubMed ID: 35986622 [TBL] [Abstract][Full Text] [Related]
6. Freeze-Drying Technique for Microencapsulation of Pudziuvelyte L; Marksa M; Sosnowska K; Winnicka K; Morkuniene R; Bernatoniene J Molecules; 2020 May; 25(9):. PubMed ID: 32397476 [TBL] [Abstract][Full Text] [Related]
7. Effect of Microencapsulation on Chemical Composition and Antimicrobial, Antioxidant and Cytotoxic Properties of Lemongrass ( de Melo AM; Barbi RCT; Chaves Almeida FL; de Souza WFC; de Melo Cavalcante AM; de Souza HJB; Botrel DA; Borges SV; Costa RG; Quirino MR; de Sousa S Food Technol Biotechnol; 2022 Sep; 60(3):386-395. PubMed ID: 36320351 [TBL] [Abstract][Full Text] [Related]
8. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Akhavan Mahdavi S; Jafari SM; Assadpoor E; Dehnad D Int J Biol Macromol; 2016 Apr; 85():379-85. PubMed ID: 26772915 [TBL] [Abstract][Full Text] [Related]
9. Freeze-dried human milk microcapsules using gum arabic and maltodextrin: An approach to improving solubility. Alves ES; Ferreira CSR; Souza PR; Bruni ARS; Castro MC; Saqueti BHF; Santos OO; Madrona GS; Visentainer JV Int J Biol Macromol; 2023 May; 238():124100. PubMed ID: 36958443 [TBL] [Abstract][Full Text] [Related]
12. Effect of coating material on microencapsulated phenolic compounds extracted from agroindustrial ciriguela peel residue. Silva Júnior MED; Silva NBD; Araújo MVRL; Converti A; Dos Santos Lima M; Maciel MIS J Sci Food Agric; 2024 Feb; 104(3):1335-1346. PubMed ID: 37782290 [TBL] [Abstract][Full Text] [Related]
13. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Kuck LS; Noreña CP Food Chem; 2016 Mar; 194():569-76. PubMed ID: 26471594 [TBL] [Abstract][Full Text] [Related]
14. Investigation of Bioavailability and Food-Processing Properties of Maag P; Dirr S; Özmutlu Karslioglu Ö Foods; 2022 Jun; 11(13):. PubMed ID: 35804738 [TBL] [Abstract][Full Text] [Related]
15. Encapsulation of coffee silverskin extracts by foam mat drying and comparison with powders obtained by spray drying and freeze-drying. Vimercati WC; Araújo CDS; Macedo LL; Correa JLG; Pimenta CJ J Food Sci; 2022 Apr; 87(4):1767-1779. PubMed ID: 35279836 [TBL] [Abstract][Full Text] [Related]
16. Effects of Enzymatic Liquefaction, Drying Techniques, and Wall Materials on the Physicochemical Properties, Bioactivities, and Morphologies of Zinc-Amaranth ( Amin SFM; Karim R; Yusof YA; Muhammad K Int J Food Sci; 2021; 2021():1819104. PubMed ID: 34722754 [TBL] [Abstract][Full Text] [Related]
17. Microencapsulation of Pineapple Peel Extract by Spray Drying Using Maltodextrin, Inulin, and Arabic Gum as Wall Matrices. Lourenço SC; Moldão-Martins M; Alves VD Foods; 2020 Jun; 9(6):. PubMed ID: 32498295 [TBL] [Abstract][Full Text] [Related]
18. Microencapsulation of Brazilian Cherokee blackberry extract by freeze-drying using maltodextrin, gum Arabic, and pectin as carrier materials. Oro CED; Paroul N; Mignoni ML; Zabot GL; Backes GT; Dallago RM; Tres MV Food Sci Technol Int; 2023 Apr; 29(3):255-265. PubMed ID: 34939457 [TBL] [Abstract][Full Text] [Related]
19. Physicochemical properties, microstructure, and storage stability of Pulicaria jaubertii extract microencapsulated with different protein biopolymers and gum arabic as wall materials. Al-Maqtari QA; Mohammed JK; Mahdi AA; Al-Ansi W; Zhang M; Al-Adeeb A; Wei M; Phyo HM; Yao W Int J Biol Macromol; 2021 Sep; 187():939-954. PubMed ID: 34343588 [TBL] [Abstract][Full Text] [Related]
20. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. Mahdi AA; Mohammed JK; Al-Ansi W; Ghaleb ADS; Al-Maqtari QA; Ma M; Ahmed MI; Wang H Int J Biol Macromol; 2020 Jun; 152():1125-1134. PubMed ID: 31751737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]