These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 33505415)

  • 21. Post-veraison irreversible stem shrinkage in grapevine (Vitis vinifera) is caused by periderm formation.
    Van de Wal BAE; Leroux O; Steppe K
    Tree Physiol; 2018 May; 38(5):745-754. PubMed ID: 29244181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues.
    Davies C; Robinson SP
    Plant Physiol; 1996 May; 111(1):275-83. PubMed ID: 8685267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis.
    Gambino G; Cuozzo D; Fasoli M; Pagliarani C; Vitali M; Boccacci P; Pezzotti M; Mannini F
    J Exp Bot; 2012 Oct; 63(16):5919-33. PubMed ID: 22987838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Fractions of Crop Evapotranspiration Affects Carbon Partitioning of Grapevine Differentially in a Hot Climate.
    Torres N; Yu R; Martínez-Lüscher J; Kostaki E; Kurtural SK
    Front Plant Sci; 2021; 12():633600. PubMed ID: 33692817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sugar Transporters in Plants: New Insights and Discoveries.
    Julius BT; Leach KA; Tran TM; Mertz RA; Braun DM
    Plant Cell Physiol; 2017 Sep; 58(9):1442-1460. PubMed ID: 28922744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of sugars and simple sugar derivatives in plants.
    Patrick JW; Botha FC; Birch RG
    Plant Biotechnol J; 2013 Feb; 11(2):142-56. PubMed ID: 23043616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of Polar Auxin Transport Identifies the Molecular Determinants of Source-Sink Carbon Relationships and Sink Strength in Poplar.
    Balasubramanian VK; Rivas-Ubach A; Winkler T; Mitchell H; Moran J; Ahkami AH
    Tree Physiol; 2023 Jun; ():. PubMed ID: 37265358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vitis vinifera root and leaf metabolic composition during fruit maturation: implications of defoliation.
    Rossouw GC; Orchard BA; Šuklje K; Smith JP; Barril C; Deloire A; Holzapfel BP
    Physiol Plant; 2017 Dec; 161(4):434-450. PubMed ID: 28692131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome Sequence Analysis Elaborates a Complex Defensive Mechanism of Grapevine (
    Guan L; Haider MS; Khan N; Nasim M; Jiu S; Fiaz M; Zhu X; Zhang K; Fang J
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength.
    Chen Z; Qin C; Wang M; Liao F; Liao Q; Liu X; Li Y; Lakshmanan P; Long M; Huang D
    BMC Plant Biol; 2019 Jun; 19(1):285. PubMed ID: 31253103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Tonoplast Sugar Transporter Underlies a Sugar Accumulation QTL in Watermelon.
    Ren Y; Guo S; Zhang J; He H; Sun H; Tian S; Gong G; Zhang H; Levi A; Tadmor Y; Xu Y
    Plant Physiol; 2018 Jan; 176(1):836-850. PubMed ID: 29118248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sugars and flowering in the grapevine (Vitis vinifera L.).
    Lebon G; Wojnarowiez G; Holzapfel B; Fontaine F; Vaillant-Gaveau N; Clément C
    J Exp Bot; 2008; 59(10):2565-78. PubMed ID: 18508810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Source-Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling.
    Yu SM; Lo SF; Ho TD
    Trends Plant Sci; 2015 Dec; 20(12):844-857. PubMed ID: 26603980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Berry ripening: recently heard through the grapevine.
    Kuhn N; Guan L; Dai ZW; Wu BH; Lauvergeat V; Gomès E; Li SH; Godoy F; Arce-Johnson P; Delrot S
    J Exp Bot; 2014 Aug; 65(16):4543-59. PubMed ID: 24285825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Source-sink interaction: a century old concept under the light of modern molecular systems biology.
    Chang TG; Zhu XG; Raines C
    J Exp Bot; 2017 Jul; 68(16):4417-4431. PubMed ID: 28338782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Rapid Changes in Sink-Source Ratio on Export and Distribution of Products of Photosynthesis in Leaves of Beta vulgaris L. and Phaseolus vulgaris L.
    Fondy BR; Geiger DR
    Plant Physiol; 1980 Nov; 66(5):945-9. PubMed ID: 16661558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in sugar content and related enzyme activities in table grape (Vitis vinifera L.) in response to foliar selenium fertilizer.
    Zhu S; Liang Y; An X; Kong F; Gao D; Yin H
    J Sci Food Agric; 2017 Sep; 97(12):4094-4102. PubMed ID: 28211621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica.
    Franck N; Vaast P; Génard M; Dauzat J
    Tree Physiol; 2006 Apr; 26(4):517-25. PubMed ID: 16414930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression analysis of genes associated with sucrose accumulation and its effect on source-sink relationship in high sucrose accumulating early maturing sugarcane variety.
    Verma I; Roopendra K; Sharma A; Chandra A; Kamal A
    Physiol Mol Biol Plants; 2019 Jan; 25(1):207-220. PubMed ID: 30804643
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Zhang Z; Zou L; Ren C; Ren F; Wang Y; Fan P; Li S; Liang Z
    Genes (Basel); 2019 Mar; 10(4):. PubMed ID: 30925768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.