These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33505701)

  • 1. Comparative genomics of cetartiodactyla: energy metabolism underpins the transition to an aquatic lifestyle.
    Derous D; Sahu J; Douglas A; Lusseau D; Wenzel M
    Conserv Physiol; 2021; 9(1):coaa136. PubMed ID: 33505701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic signatures of lipid metabolism evolution in Cetacea since the divergence from terrestrial ancestor.
    Endo Y; Kamei KI; Inoue-Murayama M
    J Evol Biol; 2018 Nov; 31(11):1655-1665. PubMed ID: 30074670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the superoxide dismutase gene family in Cetartiodactyla.
    Tian R; Geng Y; Guo H; Yang C; Seim I; Yang G
    J Evol Biol; 2021 Jul; 34(7):1046-1060. PubMed ID: 33896059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct evolution of toll-like receptor signaling pathway genes in cetaceans.
    Tian R; Seim I; Zhang Z; Yang Y; Ren W; Xu S; Yang G
    Genes Genomics; 2019 Dec; 41(12):1417-1430. PubMed ID: 31535317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signature of positive selection in mitochondrial DNA in Cetartiodactyla.
    Mori S; Matsunami M
    Genes Genet Syst; 2018 Sep; 93(2):65-73. PubMed ID: 29643269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification.
    Ishengoma E; Agaba M
    BMC Evol Biol; 2017 Feb; 17(1):54. PubMed ID: 28209121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Nasal Complex of a Semiaquatic Artiodactyl, the Moose (Alces alces): Is it a Good Evolutionary Model for the Ancestors of Cetaceans?
    Márquez S; Pagano AS; Mongle CS; Albertine KH; Laitman JT
    Anat Rec (Hoboken); 2019 May; 302(5):667-692. PubMed ID: 30422388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated evolutionary rate of the myoglobin gene in long-diving whales.
    Nery MF; Arroyo JI; Opazo JC
    J Mol Evol; 2013 Jun; 76(6):380-7. PubMed ID: 23857304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans.
    Zhou X; Sun D; Guang X; Ma S; Fang X; Mariotti M; Nielsen R; Gladyshev VN; Yang G
    Genome Biol Evol; 2018 Mar; 10(3):967-975. PubMed ID: 29608729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving.
    Tian R; Wang Z; Niu X; Zhou K; Xu S; Yang G
    Genome Biol Evol; 2016 Feb; 8(3):827-39. PubMed ID: 26912402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation.
    Tian R; Yang C; Chai SM; Guo H; Seim I; Yang G
    Zool Res; 2022 Mar; 43(2):241-254. PubMed ID: 35194983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'Obesity' is healthy for cetaceans? Evidence from pervasive positive selection in genes related to triacylglycerol metabolism.
    Wang Z; Chen Z; Xu S; Ren W; Zhou K; Yang G
    Sci Rep; 2015 Sep; 5():14187. PubMed ID: 26381091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cetacean brains: how aquatic are they?
    Marino L
    Anat Rec (Hoboken); 2007 Jun; 290(6):694-700. PubMed ID: 17516433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the FGF gene family provides insights into aquatic adaptation in cetaceans.
    Nam K; Lee KW; Chung O; Yim HS; Cha SS; Lee SW; Jun J; Cho YS; Bhak J; Magalhães JP; Lee JH; Jeong JY
    Sci Rep; 2017 Jan; 7():40233. PubMed ID: 28074842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical evolution and molecular adaptation of the cetacean and artiodactyl cytochrome b proteins.
    McClellan DA; Palfreyman EJ; Smith MJ; Moss JL; Christensen RG; Sailsbery JK
    Mol Biol Evol; 2005 Mar; 22(3):437-55. PubMed ID: 15509727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla.
    Graur D; Higgins DG
    Mol Biol Evol; 1994 May; 11(3):357-64. PubMed ID: 8015431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution of wound healing-related genes during cetacean secondary aquatic adaptation.
    Kang J; Gu L; Guo B; Rong W; Xu S; Yang G; Ren W
    Integr Zool; 2024 Sep; 19(5):898-912. PubMed ID: 37897119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Organization and Phylogeny of MHC Class II Loci in Cetaceans.
    Zhang Z; Sun X; Chen M; Li L; Ren W; Xu S; Yang G
    J Hered; 2019 May; 110(3):332-339. PubMed ID: 30844043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals.
    Tian R; Yin D; Liu Y; Seim I; Xu S; Yang G
    Front Genet; 2017; 8():205. PubMed ID: 29270192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans.
    São Pedro SL; Alves JM; Barreto AS; Lima AO
    PLoS One; 2015; 10(7):e0134516. PubMed ID: 26226365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.