These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Using individual-based bioenergetic models to predict the aggregate effects of disturbance on populations: A case study with beaked whales and Navy sonar. Hin V; de Roos AM; Benoit-Bird KJ; Claridge DE; DiMarzio N; Durban JW; Falcone EA; Jacobson EK; Jones-Todd CM; Pirotta E; Schorr GS; Thomas L; Watwood S; Harwood J PLoS One; 2023; 18(8):e0290819. PubMed ID: 37651444 [TBL] [Abstract][Full Text] [Related]
4. A Dynamic State Model of Migratory Behavior and Physiology to Assess the Consequences of Environmental Variation and Anthropogenic Disturbance on Marine Vertebrates. Pirotta E; Mangel M; Costa DP; Mate B; Goldbogen JA; Palacios DM; Hückstädt LA; McHuron EA; Schwarz L; New L Am Nat; 2018 Feb; 191(2):E40-E56. PubMed ID: 29351020 [TBL] [Abstract][Full Text] [Related]
9. Predicting the population consequences of acoustic disturbance, with application to an endangered gray whale population. McHuron EA; Aerts L; Gailey G; Sychenko O; Costa DP; Mangel M; Schwarz LK Ecol Appl; 2021 Dec; 31(8):e02440. PubMed ID: 34374143 [TBL] [Abstract][Full Text] [Related]
10. Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply. Hin V; Harwood J; de Roos AM Ecol Appl; 2019 Jul; 29(5):e01903. PubMed ID: 30980583 [TBL] [Abstract][Full Text] [Related]
11. Tread-water feeding of Bryde's whales. Iwata T; Akamatsu T; Thongsukdee S; Cherdsukjai P; Adulyanukosol K; Sato K Curr Biol; 2017 Nov; 27(21):R1154-R1155. PubMed ID: 29112865 [TBL] [Abstract][Full Text] [Related]
13. Identifying Variations in Baseline Behavior of Killer Whales (Orcinus orca) to Contextualize Their Responses to Anthropogenic Noise. Samarra FI; Miller PJ Adv Exp Med Biol; 2016; 875():963-8. PubMed ID: 26611056 [TBL] [Abstract][Full Text] [Related]
14. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Hazen EL; Friedlaender AS; Goldbogen JA Sci Adv; 2015 Oct; 1(9):e1500469. PubMed ID: 26601290 [TBL] [Abstract][Full Text] [Related]
15. Propensity for Risk in Reproductive Strategy Affects Susceptibility to Anthropogenic Disturbance. Pirotta E; Hin V; Mangel M; New L; Costa DP; de Roos AM; Harwood J Am Nat; 2020 Oct; 196(4):E71-E87. PubMed ID: 32970466 [TBL] [Abstract][Full Text] [Related]
16. Behavioural responses of fin whales to military mid-frequency active sonar. Southall BL; Allen AN; Calambokidis J; Casey C; DeRuiter SL; Fregosi S; Friedlaender AS; Goldbogen JA; Harris CM; Hazen EL; Popov V; Stimpert AK R Soc Open Sci; 2023 Dec; 10(12):231775. PubMed ID: 38094262 [TBL] [Abstract][Full Text] [Related]
17. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. Goldbogen JA; Calambokidis J; Oleson E; Potvin J; Pyenson ND; Schorr G; Shadwick RE J Exp Biol; 2011 Jan; 214(Pt 1):131-46. PubMed ID: 21147977 [TBL] [Abstract][Full Text] [Related]
18. The development of an intermediate-duration tag to characterize the diving behavior of large whales. Mate BR; Irvine LM; Palacios DM Ecol Evol; 2017 Jan; 7(2):585-595. PubMed ID: 28116055 [TBL] [Abstract][Full Text] [Related]
19. Breathing Patterns Indicate Cost of Exercise During Diving and Response to Experimental Sound Exposures in Long-Finned Pilot Whales. Isojunno S; Aoki K; Curé C; Kvadsheim PH; Miller PJO Front Physiol; 2018; 9():1462. PubMed ID: 30459631 [TBL] [Abstract][Full Text] [Related]
20. Understanding the Population Consequences of Acoustic Disturbance for Marine Mammals. Harwood J; King S; Booth C; Donovan C; Schick RS; Thomas L; New L Adv Exp Med Biol; 2016; 875():417-23. PubMed ID: 26610986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]