These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). Danner H; Samudrala D; Cristescu SM; Van Dam NM J Chem Ecol; 2012 Jun; 38(6):785-94. PubMed ID: 22592334 [TBL] [Abstract][Full Text] [Related]
5. Challenges and applications of volatile organic compounds monitoring technology in plant disease diagnosis. Gan Z; Zhou Q; Zheng C; Wang J Biosens Bioelectron; 2023 Oct; 237():115540. PubMed ID: 37523812 [TBL] [Abstract][Full Text] [Related]
6. Jasmonic acid and heat stress induce high volatile organic compound emissions in Picea abies from needles, but not from roots. Meischner M; Dumberger S; Daber LE; Haberstroh S; Kreuzwieser J; Schnitzler JP; Werner C Tree Physiol; 2024 May; ():. PubMed ID: 38795340 [TBL] [Abstract][Full Text] [Related]
8. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Kegge W; Ninkovic V; Glinwood R; Welschen RA; Voesenek LA; Pierik R Ann Bot; 2015 May; 115(6):961-70. PubMed ID: 25851141 [TBL] [Abstract][Full Text] [Related]
9. Insights into the Intraspecific Variability of the above and Belowground Emissions of Volatile Organic Compounds in Tomato. Dehimeche N; Buatois B; Bertin N; Staudt M Molecules; 2021 Jan; 26(1):. PubMed ID: 33466378 [TBL] [Abstract][Full Text] [Related]
10. Detection of diseased plants by analysis of volatile organic compound emission. Jansen RM; Wildt J; Kappers IF; Bouwmeester HJ; Hofstee JW; van Henten EJ Annu Rev Phytopathol; 2011; 49():157-74. PubMed ID: 21663436 [TBL] [Abstract][Full Text] [Related]
14. Barley (Hordeum distichon L.) roots synthesise volatile aldehydes with a strong age-dependent pattern and release (E)-non-2-enal and (E,Z)-nona-2,6-dienal after mechanical injury. Delory BM; Delaplace P; du Jardin P; Fauconnier ML Plant Physiol Biochem; 2016 Jul; 104():134-45. PubMed ID: 27031425 [TBL] [Abstract][Full Text] [Related]
15. Profiles of volatile organic compound emissions from soils amended with organic waste products. Abis L; Loubet B; Ciuraru R; Lafouge F; Dequiedt S; Houot S; Maron PA; Bourgeteau-Sadet S Sci Total Environ; 2018 Sep; 636():1333-1343. PubMed ID: 29913594 [TBL] [Abstract][Full Text] [Related]
16. Development of a Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Method to Study Volatile Organic Compounds (VOCs) Emitted by Lavender Roots. Stierlin É; Nicolè F; Fernandez X; Michel T Chem Biodivers; 2019 Aug; 16(8):e1900280. PubMed ID: 31211502 [TBL] [Abstract][Full Text] [Related]
17. Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots. Eilers EJ; Pauls G; Rillig MC; Hansson BS; Hilker M; Reinecke A J Chem Ecol; 2015 Mar; 41(3):253-66. PubMed ID: 25795090 [TBL] [Abstract][Full Text] [Related]
18. Discrimination of plant volatile signatures by an electronic nose: aA potential technology for plant pest and disease monitoring. Laothawornkitkul J; Moore JP; Taylor JE; Possell M; Gibson TD; Hewitt CN; Paul ND Environ Sci Technol; 2008 Nov; 42(22):8433-9. PubMed ID: 19068829 [TBL] [Abstract][Full Text] [Related]
19. Biogenic VOCs Emission Profiles Associated with Plant-Pest Interaction for Phenotyping Applications. Valencia-Ortiz M; Marzougui A; Zhang C; Bali S; Odubiyi S; Sathuvalli V; Bosque-Pérez NA; Pumphrey MO; Sankaran S Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808366 [TBL] [Abstract][Full Text] [Related]
20. Aboveground and Belowground Herbivores Synergistically Induce Volatile Organic Sulfur Compound Emissions from Shoots but Not from Roots. Danner H; Brown P; Cator EA; Harren FJ; van Dam NM; Cristescu SM J Chem Ecol; 2015 Jul; 41(7):631-40. PubMed ID: 26195194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]