These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33507029)

  • 21. Placental regulation of fetal nutrient supply.
    Larqué E; Ruiz-Palacios M; Koletzko B
    Curr Opin Clin Nutr Metab Care; 2013 May; 16(3):292-7. PubMed ID: 23416721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer.
    Marshall S
    Sci STKE; 2006 Aug; 2006(346):re7. PubMed ID: 16885148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Down-regulation of the ubiquitin-proteasome proteolysis system by amino acids and insulin involves the adenosine monophosphate-activated protein kinase and mammalian target of rapamycin pathways in rat hepatocytes.
    Chotechuang N; Azzout-Marniche D; Bos C; Chaumontet C; Gaudichon C; Tomé D
    Amino Acids; 2011 Jul; 41(2):457-68. PubMed ID: 20957397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of skeletal muscle energy/nutrient-sensing pathways during metabolic adaptation to fasting in healthy humans.
    Wijngaarden MA; Bakker LE; van der Zon GC; 't Hoen PA; van Dijk KW; Jazet IM; Pijl H; Guigas B
    Am J Physiol Endocrinol Metab; 2014 Nov; 307(10):E885-95. PubMed ID: 25249505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism.
    Monserrate JP; Chen MY; Brachmann CB
    BMC Biol; 2012 Jul; 10():63. PubMed ID: 22824239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SLC38A9: A lysosomal amino acid transporter at the core of the amino acid-sensing machinery that controls MTORC1.
    Rebsamen M; Superti-Furga G
    Autophagy; 2016 Jun; 12(6):1061-2. PubMed ID: 26431368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.
    Carroll B; Maetzel D; Maddocks OD; Otten G; Ratcliff M; Smith GR; Dunlop EA; Passos JF; Davies OR; Jaenisch R; Tee AR; Sarkar S; Korolchuk VI
    Elife; 2016 Jan; 5():. PubMed ID: 26742086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RAG GTPases in nutrient-mediated TOR signaling pathway.
    Kim E; Guan KL
    Cell Cycle; 2009 Apr; 8(7):1014-8. PubMed ID: 19270521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino acid homeostasis and signalling in mammalian cells and organisms.
    Bröer S; Bröer A
    Biochem J; 2017 May; 474(12):1935-1963. PubMed ID: 28546457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR.
    Mallén-Ponce MJ; Pérez-Pérez ME; Crespo JL
    New Phytol; 2022 Nov; 236(4):1261-1266. PubMed ID: 36052700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens.
    Fader CM; Aguilera MO; Colombo MI
    Amino Acids; 2015 Oct; 47(10):2101-12. PubMed ID: 25234192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis.
    Dunlop EA; Tee AR
    Biochem Soc Trans; 2013 Aug; 41(4):939-43. PubMed ID: 23863160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The lysosome as a command-and-control center for cellular metabolism.
    Lim CY; Zoncu R
    J Cell Biol; 2016 Sep; 214(6):653-64. PubMed ID: 27621362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino acid signalling upstream of mTOR.
    Jewell JL; Russell RC; Guan KL
    Nat Rev Mol Cell Biol; 2013 Mar; 14(3):133-9. PubMed ID: 23361334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of mTORC1 by amino acids.
    Bar-Peled L; Sabatini DM
    Trends Cell Biol; 2014 Jul; 24(7):400-6. PubMed ID: 24698685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. mTOR integrates amino acid- and energy-sensing pathways.
    Tokunaga C; Yoshino K; Yonezawa K
    Biochem Biophys Res Commun; 2004 Jan; 313(2):443-6. PubMed ID: 14684182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.
    Vlahakis A; Graef M; Nunnari J; Powers T
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10586-91. PubMed ID: 25002487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino Acid Sensing by mTORC1: Intracellular Transporters Mark the Spot.
    Goberdhan DC; Wilson C; Harris AL
    Cell Metab; 2016 Apr; 23(4):580-9. PubMed ID: 27076075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic Target of Rapamycin Complex 1: From a Nutrient Sensor to a Key Regulator of Metabolism and Health.
    Wang G; Chen L; Qin S; Zhang T; Yao J; Yi Y; Deng L
    Adv Nutr; 2022 Oct; 13(5):1882-1900. PubMed ID: 35561748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation.
    Peng T; Golub TR; Sabatini DM
    Mol Cell Biol; 2002 Aug; 22(15):5575-84. PubMed ID: 12101249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.