These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33507406)
1. Avena fatua caryopsis dormancy release is associated with changes in KAR Kępczyński J; Wójcik A; Dziurka M Planta; 2021 Jan; 253(2):52. PubMed ID: 33507406 [TBL] [Abstract][Full Text] [Related]
2. KAR Kępczyński J; Dziurka M; Wójcik A Planta; 2024 Apr; 259(6):126. PubMed ID: 38635035 [TBL] [Abstract][Full Text] [Related]
3. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos. Cembrowska-Lech D; Kępczyński J Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413 [TBL] [Abstract][Full Text] [Related]
4. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. Cembrowska-Lech D; Koprowski M; Kępczyński J J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514 [TBL] [Abstract][Full Text] [Related]
6. NO-mediated dormancy release of Avena fatua caryopses is associated with decrease in abscisic acid sensitivity, content and ABA/GA Kępczyński J; Wójcik A; Dziurka M Planta; 2023 Apr; 257(6):101. PubMed ID: 37087501 [TBL] [Abstract][Full Text] [Related]
7. Involvement of ethylene biosynthesis and perception during germination of dormant Avena fatua L. caryopses induced by KAR Ruduś I; Cembrowska-Lech D; Jaworska A; Kępczyński J Planta; 2019 Mar; 249(3):719-738. PubMed ID: 30370496 [TBL] [Abstract][Full Text] [Related]
8. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. Holloway T; Steinbrecher T; Pérez M; Seville A; Stock D; Nakabayashi K; Leubner-Metzger G New Phytol; 2021 Feb; 229(4):2179-2191. PubMed ID: 32970853 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of tricyclic butenolides and comparison their effects with known smoke-butenolide, KAR1. Krawczyk E; Koprowski M; Cembrowska-Lech D; Wójcik A; Kępczyński J J Plant Physiol; 2017 Aug; 215():91-99. PubMed ID: 28618259 [TBL] [Abstract][Full Text] [Related]
10. Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Barrero JM; Talbot MJ; White RG; Jacobsen JV; Gubler F Plant Physiol; 2009 Jun; 150(2):1006-21. PubMed ID: 19386806 [TBL] [Abstract][Full Text] [Related]
11. Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications. Sami A; Riaz MW; Zhou X; Zhu Z; Zhou K BMC Plant Biol; 2019 Dec; 19(1):577. PubMed ID: 31870301 [TBL] [Abstract][Full Text] [Related]
12. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice. Du W; Cheng J; Cheng Y; Wang L; He Y; Wang Z; Zhang H Plant Biol (Stuttg); 2015 Nov; 17(6):1156-64. PubMed ID: 26205956 [TBL] [Abstract][Full Text] [Related]
13. Re-localization of hormone effectors is associated with dormancy alleviation by temperature and after-ripening in sunflower seeds. Xia Q; Ponnaiah M; Thanikathansubramanian K; Corbineau F; Bailly C; Nambara E; Meimoun P; El-Maarouf-Bouteau H Sci Rep; 2019 Mar; 9(1):4861. PubMed ID: 30890715 [TBL] [Abstract][Full Text] [Related]
14. ABA and GA Barreto LC; Herken DMD; Silva BMR; Munné-Bosch S; Garcia QS Planta; 2020 Mar; 251(4):86. PubMed ID: 32221719 [TBL] [Abstract][Full Text] [Related]
15. The varied ability of grains to synthesize and catabolize ABA is one of the factors affecting dormancy and its release by after-ripening in imbibed triticale grains of cultivars with different pre-harvest sprouting susceptibilities. Fidler J; Grabowska A; Prabucka B; Więsyk A; Góra-Sochacka A; Bielawski W; Pojmaj M; Zdunek-Zastocka E J Plant Physiol; 2018 Jul; 226():48-55. PubMed ID: 29698912 [TBL] [Abstract][Full Text] [Related]
16. Storage behavior of Chionanthus retusus seed and asynchronous development of the radicle and shoot apex during germination in relation to germination inhibitors, including abscisic acid and four phenolic glucosides. Chien CT; Kuo-Huang LL; Shen YC; Zhang R; Chen SY; Yang JC; Pharis RP Plant Cell Physiol; 2004 Sep; 45(9):1158-67. PubMed ID: 15509838 [TBL] [Abstract][Full Text] [Related]
17. Effect of root length on epicotyl dormancy release in seeds of Paeonia ludlowii, Tibetan peony. Hao HP; He Z; Li H; Shi L; Tang YD Ann Bot; 2014 Feb; 113(3):443-52. PubMed ID: 24284815 [TBL] [Abstract][Full Text] [Related]
18. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Ali-Rachedi S; Bouinot D; Wagner MH; Bonnet M; Sotta B; Grappin P; Jullien M Planta; 2004 Jul; 219(3):479-88. PubMed ID: 15060827 [TBL] [Abstract][Full Text] [Related]
19. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Nelson DC; Riseborough JA; Flematti GR; Stevens J; Ghisalberti EL; Dixon KW; Smith SM Plant Physiol; 2009 Feb; 149(2):863-73. PubMed ID: 19074625 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination. Xu P; Tang G; Cui W; Chen G; Ma CL; Zhu J; Li P; Shan L; Liu Z; Wan S PLoS One; 2020; 15(1):e0219413. PubMed ID: 31899920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]