BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33507495)

  • 21. Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium.
    Dietz D; Zeng AP
    Bioprocess Biosyst Eng; 2014 Feb; 37(2):225-33. PubMed ID: 23749235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of biodiesel derived-glycerol for 1,3-PD and citric acid production.
    Mitrea L; Trif M; Cătoi AF; Vodnar DC
    Microb Cell Fact; 2017 Nov; 16(1):190. PubMed ID: 29110678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of 1,3-propanediol and lactic acid from crude glycerol by a microbial consortium from intertidal sludge.
    Jiang LL; Liu FY; Yang W; Li CL; Zhu BW; Zhu XH
    Biotechnol Lett; 2021 Mar; 43(3):711-717. PubMed ID: 33386498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability and oscillatory behavior of microbial consortium in continuous conversion of crude glycerol to 1,3-propanediol.
    Zhou JJ; Shen JT; Wang XL; Sun YQ; Xiu ZL
    Appl Microbiol Biotechnol; 2018 Oct; 102(19):8291-8305. PubMed ID: 30046858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production.
    Chatzifragkou A; Papanikolaou S; Kopsahelis N; Kachrimanidou V; Dorado MP; Koutinas AA
    Bioresour Technol; 2014 May; 159():167-75. PubMed ID: 24650530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum.
    Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fermentative reforming of crude glycerol to 1,3-propanediol using Clostridium butyricum strain L4.
    Gupta P; Kumar M; Gupta RP; Puri SK; Ramakumar SSV
    Chemosphere; 2022 Apr; 292():133426. PubMed ID: 34971623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage.
    Khan NH; Kang TS; Grahame DA; Haakensen MC; Ratanapariyanuch K; Reaney MJ; Korber DR; Tanaka T
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):417-28. PubMed ID: 23076589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection and characterization of an anaerobic microbial consortium with high adaptation to crude glycerol for 1,3-propanediol production.
    Zhou JJ; Shen JT; Jiang LL; Sun YQ; Mu Y; Xiu ZL
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):5985-5996. PubMed ID: 28512675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell immobilization for microbial production of 1,3-propanediol.
    Gungormusler-Yilmaz M; Cicek N; Levin DB; Azbar N
    Crit Rev Biotechnol; 2016; 36(3):482-94. PubMed ID: 25600463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):431-441. PubMed ID: 28040869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718.
    Chatzifragkou A; Dietz D; Komaitis M; Zeng AP; Papanikolaou S
    Biotechnol Bioeng; 2010 Sep; 107(1):76-84. PubMed ID: 20506102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables.
    Jolly J; Hitzmann B; Ramalingam S; Ramachandran KB
    J Biosci Bioeng; 2014 Aug; 118(2):188-94. PubMed ID: 24525111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemically mediated bioconversion and integrated purification greatly enhanced co-production of 1,3-propanediol and organic acids from glycerol in an industrial bioprocess.
    Zhang C; Traitrongsat P; Zeng AP
    Bioprocess Biosyst Eng; 2023 Apr; 46(4):565-575. PubMed ID: 36648555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol.
    Kang TS; Korber DR; Tanaka T
    Appl Environ Microbiol; 2014 Dec; 80(24):7631-9. PubMed ID: 25281374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of 1,3-propanediol production in fermentation of glycerol by Clostridium pasteurianum.
    Johnson EE; Rehmann L
    Bioresour Technol; 2016 Jun; 209():1-7. PubMed ID: 26946434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic engineering of Lactobacillus diolivorans.
    Pflügl S; Marx H; Mattanovich D; Sauer M
    FEMS Microbiol Lett; 2013 Jul; 344(2):152-8. PubMed ID: 23638657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 1,3-Propanediol production potential of Clostridium saccharobutylicum NRRL B-643.
    Gungormusler M; Gonen C; Ozdemir G; Azbar N
    N Biotechnol; 2010 Dec; 27(6):782-8. PubMed ID: 20647065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alkaline conditions stimulate the production of 1,3-propanediol in Lactobacillus panis PM1 through shifting metabolic pathways.
    Grahame DA; Kang TS; Khan NH; Tanaka T
    World J Microbiol Biotechnol; 2013 Jul; 29(7):1207-15. PubMed ID: 23400350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of 1,3-propanediol from pure and crude glycerol using a UASB reactor with attached biomass in silicone support.
    Veras STS; Rojas P; Florencio L; Kato MT; Sanz JL
    Bioresour Technol; 2019 May; 279():140-148. PubMed ID: 30716606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.