These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33507501)

  • 61. Synthesis of novel sepiolite-iron oxide-manganese dioxide nanocomposite and application for lead(II) removal from aqueous solutions.
    Fayazi M; Afzali D; Ghanei-Motlagh R; Iraji A
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18893-18903. PubMed ID: 31077042
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution.
    Khan ZH; Gao M; Qiu W; Song Z
    Chemosphere; 2020 Sep; 255():126995. PubMed ID: 32416394
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Investigating the performance of agricultural wastes and their ashes in removing phenol from leachate in a fixed-bed column.
    Ahmadinejad SO; Naeeni STO; Akbari Z; Nazif S
    Water Sci Technol; 2020 May; 81(10):2109-2126. PubMed ID: 32701490
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan.
    Li M; Zhang Z; Li R; Wang JJ; Ali A
    Int J Biol Macromol; 2016 May; 86():876-84. PubMed ID: 26879912
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions.
    Gil A; Amiri MJ; Abedi-Koupai J; Eslamian S
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2814-2829. PubMed ID: 29143259
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance.
    Jung KW; Jeong TU; Choi JW; Ahn KH; Lee SH
    Bioresour Technol; 2017 Nov; 244(Pt 1):23-32. PubMed ID: 28777987
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal: Kinetic, thermodynamic and isothermal studies.
    Tanhaei B; Ayati A; Sillanpää M
    Int J Biol Macromol; 2019 Jan; 121():1126-1134. PubMed ID: 30342945
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biomass assisted synthesis of alumina by Gardenia Jasminoides Ellis and their application for removal of Ni(II) from aqueous solution.
    Zheng N; Zhao Y; Song Q; Jia L; Fang W
    J Hazard Mater; 2013 Sep; 260():1057-63. PubMed ID: 23892172
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Experimental investigations of arsenic adsorption from contaminated water using chemically activated hematite (Fe
    Memon AQ; Ahmed S; Bhatti ZA; Maitlo G; Shah AK; Mazari SA; Muhammad A; Jatoi AS; Kandhro GA
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12898-12908. PubMed ID: 33095899
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Arsenic adsorption on two types of powdered and beaded coal mine drainage sludge adsorbent.
    Kim D; Ren Y; Cui M; Lee Y; Kim J; Kwon O; Ji W; Khim J
    Chemosphere; 2021 Jun; 272():129560. PubMed ID: 33460828
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution.
    Jin X; Xiang Z; Liu Q; Chen Y; Lu F
    Bioresour Technol; 2017 Nov; 244(Pt 1):844-849. PubMed ID: 28841789
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Potential of siltstone and its composites with biochar and magnetite nanoparticles for the removal of cadmium from contaminated aqueous solutions: Batch and column scale studies.
    Imran M; Haq Khan ZU; Iqbal J; Shah NS; Muzammil S; Ali S; Muhammad N; Aziz A; Murtaza B; Naeem MA; Amjad M; Shahid M; Zakir A; Rizwan M
    Environ Pollut; 2020 Apr; 259():113938. PubMed ID: 31952099
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Adsorption of cadmium from aqueous solutions by perlite.
    Mathialagan T; Viraraghavan T
    J Hazard Mater; 2002 Oct; 94(3):291-303. PubMed ID: 12220830
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dye removal from aqueous solution by a novel dual cross-linked biocomposite obtained from mucilage of Plantago Psyllium and eggshell membrane.
    Mirzaei S; Javanbakht V
    Int J Biol Macromol; 2019 Aug; 134():1187-1204. PubMed ID: 31128194
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Simple in situ functionalizing magnetite nanoparticles by reactive blue-19 and their application to the effective removal of Pb2+ ions from water samples.
    Madrakian T; Afkhami A; Ahmadi M
    Chemosphere; 2013 Jan; 90(2):542-7. PubMed ID: 23021384
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Self-purification of marine environments for heavy metals: a study on removal of lead(II) and copper(II) by cuttlebone.
    Dobaradaran S; Nabipour I; Keshtkar M; Ghasemi FF; Nazarialamdarloo T; Khalifeh F; Poorhosein M; Abtahi M; Saeedi R
    Water Sci Technol; 2017 Jan; 75(2):474-481. PubMed ID: 28112674
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synthesis of carboxylated chitosan and its adsorption properties for cadmium (II), lead (II) and copper (II) from aqueous solutions.
    Lv KL; Du YL; Wang CM
    Water Sci Technol; 2009; 60(2):467-74. PubMed ID: 19633389
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adsorption of tricresyl phosphate onto graphene nanomaterials from aqueous solution.
    Liu J; Xia S; Lü X; Shen H
    Water Sci Technol; 2017 Sep; 76(5-6):1565-1573. PubMed ID: 28953482
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Batch and column mode removal of the turquoise blue (TB) over bio-char based adsorbent from Prosopis Juliflora: Comparative study.
    Ramesh P; Padmanabhan V; Arunadevi R; Sudha PN; El-Zaher M A Mustafa A; Al-Ghamdi Ahmed A; Alajmi AH; Elshikh MS
    Chemosphere; 2021 May; 271():129426. PubMed ID: 33482524
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Preparation and characterization of a new sawdust/MNP/PEI nanocomposite and its applications for removing Pb (II) ions from aqueous solution.
    Ghasemi A; Sohrabi MR; Motiee F
    Water Sci Technol; 2018 Dec; 78(12):2469-2480. PubMed ID: 30767912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.