These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 3350777)
121. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl. Carr CE; Wang T; Kraemer I; Capshaw G; Ashida G; Köppl C; Kempter R; Kuokkanen PT J Neurosci; 2024 Jan; 44(1):. PubMed ID: 37989591 [TBL] [Abstract][Full Text] [Related]
122. Early-Life Stress Impairs Perception and Neural Encoding of Rapid Signals in the Auditory Pathway. Ye Y; Mattingly MM; Sunthimer MJ; Gay JD; Rosen MJ J Neurosci; 2023 May; 43(18):3232-3244. PubMed ID: 36973014 [TBL] [Abstract][Full Text] [Related]
123. Nonlinearity of intracochlear motion and local cochlear microphonic: Comparison between guinea pig and gerbil. Fallah E; Strimbu CE; Olson ES Hear Res; 2021 Jun; 405():108234. PubMed ID: 33930834 [TBL] [Abstract][Full Text] [Related]
124. Postnatal structural development of mammalian Basilar Membrane provides anatomical basis for the maturation of tonotopic maps and frequency tuning. Tani T; Koike-Tani M; Tran MT; Shribak M; Levic S Sci Rep; 2021 Apr; 11(1):7581. PubMed ID: 33828185 [TBL] [Abstract][Full Text] [Related]
125. Conductive hearing loss during development does not appreciably alter the sharpness of cochlear tuning. Ye Y; Ihlefeld A; Rosen MJ Sci Rep; 2021 Feb; 11(1):3955. PubMed ID: 33597563 [TBL] [Abstract][Full Text] [Related]
126. Developmental changes of mechanics measured in the gerbil cochlea. Emadi G; Richter CP J Assoc Res Otolaryngol; 2008 Mar; 9(1):22-32. PubMed ID: 18046606 [TBL] [Abstract][Full Text] [Related]
128. Ontogenesis of tonotopy in inferior colliculus of a hipposiderid bat reveals postnatal shift in frequency-place code. Rübsamen R; Neuweiler G; Marimuthu G J Comp Physiol A; 1989 Oct; 165(6):755-69. PubMed ID: 2810149 [TBL] [Abstract][Full Text] [Related]
129. Postnatal development of central auditory frequency maps. Rübsamen R J Comp Physiol A; 1992 Feb; 170(2):129-43. PubMed ID: 1583602 [TBL] [Abstract][Full Text] [Related]
130. Ontogenic changes in cochlear characteristic frequency at a basal turn location as reflected in the summating potential. Yancey C; Dallos P Hear Res; 1985 May; 18(2):189-95. PubMed ID: 4044420 [TBL] [Abstract][Full Text] [Related]
131. Dynamics of the flow of perilymph in the cochlea of the guinea pig. Huangfu M; Komune S; Snow JB Arch Otolaryngol; 1982 Sep; 108(9):535-8. PubMed ID: 7115182 [TBL] [Abstract][Full Text] [Related]
132. Sound pressures in the basal turn of the cat cochlea. Nedzelnitsky V J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467 [TBL] [Abstract][Full Text] [Related]
133. Electrical impedance measurements of cochlear structures using the four-electrode reflection-coefficient technique. Kumar G; Chokshi M; Richter CP Hear Res; 2010 Jan; 259(1-2):86-94. PubMed ID: 19857561 [TBL] [Abstract][Full Text] [Related]
134. Developmental changes in frequency mapping of the gerbil cochlea: comparison of two cochlear locations. Arjmand E; Harris D; Dallos P Hear Res; 1988 Jan; 32(1):93-6. PubMed ID: 3350777 [TBL] [Abstract][Full Text] [Related]