These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33507968)

  • 1. Highly exposed segment of the Spf1p P5A-ATPase near transmembrane M5 detected by limited proteolysis.
    Petrovich GD; Corradi GR; Pavan CH; Noli Truant S; Adamo HP
    PLoS One; 2021; 16(1):e0245679. PubMed ID: 33507968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Spf1p P5A-ATPase "arm-like" domain is not essential for ATP hydrolysis but its deletion impairs autophosphorylation.
    Grenon P; Corradi GR; Petrovich GD; Mazzitelli LR; Adamo HP
    Biochem Biophys Res Commun; 2021 Jul; 563():113-118. PubMed ID: 34087682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of metal ions on the Spf1p P5A-ATPase. High sensitivity to irreversible inhibition by zinc.
    Petrovich GD; Corradi GR; Adamo HP
    Arch Biochem Biophys; 2022 Dec; 732():109450. PubMed ID: 36328152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of the P5A-ATPase Spf1p phosphoenzyme by a Ca2+-dependent phosphatase.
    Corradi GR; Mazzitelli LR; Petrovich GD; Grenon P; Sørensen DM; Palmgren M; de Tezanos Pinto F; Adamo HP
    PLoS One; 2020; 15(4):e0232476. PubMed ID: 32353073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The P5A ATPase Spf1p is stimulated by phosphatidylinositol 4-phosphate and influences cellular sterol homeostasis.
    Sørensen DM; Holen HW; Pedersen JT; Martens HJ; Silvestro D; Stanchev LD; Costa SR; Günther Pomorski T; López-Marqués RL; Palmgren M
    Mol Biol Cell; 2019 Apr; 30(9):1069-1084. PubMed ID: 30785834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the Formation of the Spf1p Phosphoenzyme by Ca2.
    Corradi GR; Czysezon NA; Mazzitelli LR; Sarbia N; Adamo HP
    J Biol Chem; 2016 Apr; 291(14):7767-73. PubMed ID: 26858246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shadows of an absent partner: ATP hydrolysis and phosphoenzyme turnover of the Spf1 (sensitivity to Pichia farinosa killer toxin) P5-ATPase.
    Corradi GR; de Tezanos Pinto F; Mazzitelli LR; Adamo HP
    J Biol Chem; 2012 Aug; 287(36):30477-84. PubMed ID: 22745129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards defining the substrate of orphan P5A-ATPases.
    Sørensen DM; Holen HW; Holemans T; Vangheluwe P; Palmgren MG
    Biochim Biophys Acta; 2015 Mar; 1850(3):524-35. PubMed ID: 24836520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase.
    McKenna MJ; Sim SI; Ordureau A; Wei L; Harper JW; Shao S; Park E
    Science; 2020 Sep; 369(6511):. PubMed ID: 32973005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction: Highly exposed segment of the Spf1p P5A-ATPase near transmembrane M5 detected by limited proteolysis.
    PLOS ONE Staff
    PLoS One; 2021; 16(8):e0256945. PubMed ID: 34437637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative function of the CHD5-like protein Mdm39p with a P-type ATPase Spf1p in the maintenance of ER homeostasis in Saccharomyces cerevisiae.
    Ando A; Suzuki C
    Mol Genet Genomics; 2005 Jul; 273(6):497-506. PubMed ID: 15909163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunochemical and mutational analyses of P-type ATPase Spf1p involved in the yeast secretory pathway.
    Suzuki C
    Biosci Biotechnol Biochem; 2001 Nov; 65(11):2405-11. PubMed ID: 11791712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point mutations in the extracytosolic loop between transmembrane segments M5 and M6 of the yeast Pma1 H+-ATPase: alanine-scanning mutagenesis.
    Petrov VV
    J Biomol Struct Dyn; 2015; 33(1):70-84. PubMed ID: 24256122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of transmembrane segment M8 in the biogenesis and function of yeast plasma-membrane H(+)-ATPase.
    Guerra G; Petrov VV; Allen KE; Miranda M; Pardo JP; Slayman CW
    Biochim Biophys Acta; 2007 Oct; 1768(10):2383-92. PubMed ID: 17573037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topology of the yeast plasma membrane proton-translocating ATPase.
    Davis CB; Hammes GG
    J Biol Chem; 1989 Jan; 264(1):370-4. PubMed ID: 2521219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP hydrolytic activity of purified Spf1p correlate with micellar lipid fluidity and is dependent on conserved residues in transmembrane helix M1.
    Ipsen JØ; Sørensen DM
    PLoS One; 2022; 17(10):e0274908. PubMed ID: 36264897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations define cross-talk between the N-terminal nucleotide-binding domain and transmembrane helix-2 of the yeast multidrug transporter Pdr5: possible conservation of a signaling interface for coupling ATP hydrolysis to drug transport.
    Sauna ZE; Bohn SS; Rutledge R; Dougherty MP; Cronin S; May L; Xia D; Ambudkar SV; Golin J
    J Biol Chem; 2008 Dec; 283(50):35010-22. PubMed ID: 18842589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of C-terminal truncations on trafficking of the yeast plasma membrane H+-ATPase.
    Mason AB; Allen KE; Slayman CW
    J Biol Chem; 2006 Aug; 281(33):23887-98. PubMed ID: 16751629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane topology of the arsenite permease Acr3 from Saccharomyces cerevisiae.
    Wawrzycka D; Markowska K; Maciaszczyk-Dziubinska E; Migocka M; Wysocki R
    Biochim Biophys Acta Biomembr; 2017 Jan; 1859(1):117-125. PubMed ID: 27836640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing hydrophobic regions of the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae.
    Seto-Young D; Monk BC; Perlin DS
    Biochim Biophys Acta; 1992 Sep; 1102(2):213-9. PubMed ID: 1390824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.