These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33507973)

  • 1. Prediction of nasal spray drug absorption influenced by mucociliary clearance.
    Shang Y; Inthavong K; Qiu D; Singh N; He F; Tu J
    PLoS One; 2021; 16(1):e0246007. PubMed ID: 33507973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Effects of Nasal Spray Suspension Particle Size and Properties.
    Rygg A; Hindle M; Longest PW
    Pharm Res; 2016 Apr; 33(4):909-21. PubMed ID: 26689412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Development of a CFD Model.
    Rygg A; Longest PW
    J Aerosol Med Pulm Drug Deliv; 2016 Oct; 29(5):416-431. PubMed ID: 26824178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof-of-Concept Study Using Computational Fluid Dynamics.
    Rygg A; Hindle M; Longest PW
    J Pharm Sci; 2016 Jun; 105(6):1995-2004. PubMed ID: 27238495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.
    Kimbell JS; Segal RA; Asgharian B; Wong BA; Schroeter JD; Southall JP; Dickens CJ; Brace G; Miller FJ
    J Aerosol Med; 2007; 20(1):59-74. PubMed ID: 17388754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a computational fluid dynamics model for mucociliary clearance in the nasal cavity.
    Shang Y; Inthavong K; Tu J
    J Biomech; 2019 Mar; 85():74-83. PubMed ID: 30685195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and Sensitivity analysis for a nasal spray deposition computational model.
    Calmet H; Oks D; Santiago A; Houzeaux G; Corfec AL; Deruyver L; Rigaut C; Lambert P; Haut B; Goole J
    Int J Pharm; 2022 Oct; 626():122118. PubMed ID: 36029992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional deposition of mometasone furoate nasal spray suspension in humans.
    Shah SA; Berger RL; McDermott J; Gupta P; Monteith D; Connor A; Lin W
    Allergy Asthma Proc; 2015; 36(1):48-57. PubMed ID: 25562556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of bronchial mucociliary clearance of insoluble particles by computational fluid and particle dynamics methods.
    Farkas A; Szöke I
    Inhal Toxicol; 2013 Aug; 25(10):593-605. PubMed ID: 23937417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On computational fluid dynamics models for sinonasal drug transport: Relevance of nozzle subtraction and nasal vestibular dilation.
    Basu S; Frank-Ito DO; Kimbell JS
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2946. PubMed ID: 29172251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computed intranasal spray penetration: comparisons before and after nasal surgery.
    Frank DO; Kimbell JS; Cannon D; Rhee JS
    Int Forum Allergy Rhinol; 2013 Jan; 3(1):48-55. PubMed ID: 22927179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing quantitative relationships between changes in nasal spray in vitro metrics and drug delivery to the posterior nasal region.
    Kolanjiyil AV; Walenga R; Babiskin A; Golshahi L; Hindle M; Longest W
    Int J Pharm; 2023 Mar; 635():122718. PubMed ID: 36781083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted drug delivery to the inferior meatus cavity of the nasal airway using a nasal spray device with angled tip.
    Zare F; Aalaei E; Zare F; Faramarzi M; Kamali R
    Comput Methods Programs Biomed; 2022 Jun; 221():106864. PubMed ID: 35580527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental measurements and computational predictions of regional particle deposition in a sectional nasal model.
    Schroeter JD; Tewksbury EW; Wong BA; Kimbell JS
    J Aerosol Med Pulm Drug Deliv; 2015 Feb; 28(1):20-9. PubMed ID: 24580111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deviated nasal septum hinders intranasal sprays: a computer simulation study.
    Frank DO; Kimbell JS; Cannon D; Pawar SS; Rhee JS
    Rhinology; 2012 Sep; 50(3):311-8. PubMed ID: 22888490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the volume of fluid (VOF) method for the simulation of the mucus clearance process with CFD.
    Paz C; Suárez E; Vence J; Cabarcos A
    Comput Methods Biomech Biomed Engin; 2019 Apr; 22(5):547-566. PubMed ID: 30773045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
    Bass K; Boc S; Hindle M; Dodson K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2019 Jun; 32(3):132-148. PubMed ID: 30556777
    [No Abstract]   [Full Text] [Related]  

  • 18. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional model of tracheobronchial particle distribution during mucociliary clearance in the human respiratory tract.
    Sturm R
    Z Med Phys; 2013 May; 23(2):111-9. PubMed ID: 23477913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dexpanthenol nasal spray in comparison to dexpanthenol nasal ointment. A prospective, randomised, open, cross-over study to compare nasal mucociliary clearance].
    Verse T; Klöcker N; Riedel F; Pirsig W; Scheithauer MO
    HNO; 2004 Jul; 52(7):611-5. PubMed ID: 15309258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.