These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33508103)

  • 1. Using single-cell cytometry to illustrate integrated multi-perspective evaluation of clustering algorithms using Pareto fronts.
    Putri GH; Koprinska I; Ashhurst TM; King NJC; Read MN
    Bioinformatics; 2021 Jan; ():. PubMed ID: 33508103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Clustering-Based Adaptive Evolutionary Algorithm for Multiobjective Optimization With Irregular Pareto Fronts.
    Hua Y; Jin Y; Hao K
    IEEE Trans Cybern; 2019 Jul; 49(7):2758-2770. PubMed ID: 29994342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes.
    Maulik U; Mukhopadhyay A; Bandyopadhyay S
    BMC Bioinformatics; 2009 Jan; 10():27. PubMed ID: 19154590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of similarity metrics on single-cell RNA-seq data clustering.
    Kim T; Chen IR; Lin Y; Wang AY; Yang JYH; Yang P
    Brief Bioinform; 2019 Nov; 20(6):2316-2326. PubMed ID: 30137247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections.
    Bian C; Wang X; Su Y; Wang Y; Wong KC; Li X
    Comput Struct Biotechnol J; 2022; 20():2181-2197. PubMed ID: 35615016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensembling of Gene Clusters Utilizing Deep Learning and Protein-Protein Interaction Information.
    Dutta P; Saha S; Chopra S; Miglani V
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2005-2016. PubMed ID: 31135367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster stability in the analysis of mass cytometry data.
    Melchiotti R; Gracio F; Kordasti S; Todd AK; de Rinaldis E
    Cytometry A; 2017 Jan; 91(1):73-84. PubMed ID: 27754590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of volumetric modulated arc therapy and helical tomotherapy for prostate cancer using Pareto fronts.
    Wüthrich D; Wang Z; Zeverino M; Bourhis J; Bochud F; Moeckli R
    Med Phys; 2024 Apr; 51(4):3010-3019. PubMed ID: 38055371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells.
    Stassen SV; Siu DMD; Lee KCM; Ho JWK; So HKH; Tsia KK
    Bioinformatics; 2020 May; 36(9):2778-2786. PubMed ID: 31971583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCHNEL: scalable clustering of high dimensional single-cell data.
    Abdelaal T; de Raadt P; Lelieveldt BPF; Reinders MJT; Mahfouz A
    Bioinformatics; 2020 Dec; 36(Suppl_2):i849-i856. PubMed ID: 33381821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GeoWaVe: geometric median clustering with weighted voting for ensemble clustering of cytometry data.
    Burton RJ; Cuff SM; Morgan MP; Artemiou A; Eberl M
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36413065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison framework and guideline of clustering methods for mass cytometry data.
    Liu X; Song W; Wong BY; Zhang T; Yu S; Lin GN; Ding X
    Genome Biol; 2019 Dec; 20(1):297. PubMed ID: 31870419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for gene marker identification.
    Mukhopadhyay A; Bandyopadhyay S; Maulik U
    PLoS One; 2010 Nov; 5(11):e13803. PubMed ID: 21103052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The feasibility of using Pareto fronts for comparison of treatment planning systems and delivery techniques.
    Ottosson RO; Engstrom PE; Sjöström D; Behrens CF; Karlsson A; Knöös T; Ceberg C
    Acta Oncol; 2009; 48(2):233-7. PubMed ID: 18752085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assisting decision-makers select multi-dimensionally efficient infrastructure designs - Application to urban drainage systems.
    Seyedashraf O; Bottacin-Busolin A; Harou JJ
    J Environ Manage; 2023 Jun; 336():117689. PubMed ID: 36924710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-view subspace clustering via adaptive graph learning and late fusion alignment.
    Tang C; Sun K; Tang C; Zheng X; Liu X; Huang JJ; Zhang W
    Neural Netw; 2023 Aug; 165():333-343. PubMed ID: 37327580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.