These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3350813)

  • 21. Characterization of insulin receptor kinase activity and autophosphorylation in different skeletal muscle types.
    Azhar S; Butte JC; Santos RF; Mondon CE; Reaven GM
    Am J Physiol; 1991 Jan; 260(1 Pt 1):E1-7. PubMed ID: 1846272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The T-tubule is a cell-surface target for insulin-regulated recycling of membrane proteins in skeletal muscle.
    Muñoz P; Rosemblatt M; Testar X; Palacín M; Thoidis G; Pilch PF; Zorzano A
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):393-400. PubMed ID: 8526847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of insulin-mediated phosphorylation of the insulin receptor in a cell-free system.
    Zick Y; Kasuga M; Kahn CR; Roth J
    J Biol Chem; 1983 Jan; 258(1):75-80. PubMed ID: 6336757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Partial purification and reconstitution of the sarcolemmal L-lactate carrier from rat skeletal muscle.
    Allen PJ; Brooks GA
    Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):207-12. PubMed ID: 7945241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural analysis and subunit interaction of insulin receptor from membranes of cultured embryonic chick heart cells.
    Endo F; Elsas LJ
    Endocrinology; 1984 Nov; 115(5):1828-37. PubMed ID: 6386443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental expression of receptors for insulin, insulin-like growth factor I (IGF-I), and IGF-II in rat skeletal muscle.
    Alexandrides T; Moses AC; Smith RJ
    Endocrinology; 1989 Feb; 124(2):1064-76. PubMed ID: 2536310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Serotonergic and adrenergic regulation of skeletal muscle metabolism in the rat. II. The use of [125I]iodolysergic acid diethylamide and [125I]iodopindolol as probes of sarcolemmal receptor function and specificity.
    Moretti-Rojas I; Ezrailson EG; Birnbaumer L; Entman ML; Garber AJ
    J Biol Chem; 1983 Oct; 258(20):12499-508. PubMed ID: 6313663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles.
    Grimditch GK; Barnard RJ; Sternlicht E; Whitson RH; Kaplan SA
    Am J Physiol; 1987 Mar; 252(3 Pt 1):E420-5. PubMed ID: 3548433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential binding of monoiodinated insulins to muscle and liver derived receptors and activation of the receptor kinase.
    Burant CF; Treutelaar MK; Peavy DE; Frank BH; Buse MG
    Biochem Biophys Res Commun; 1988 May; 152(3):1353-60. PubMed ID: 2837184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The subunit structure of the high affinity insulin receptor. Evidence for a disulfide-linked receptor complex in fat cell and liver plasma membranes.
    Pilch PF; Czech MP
    J Biol Chem; 1980 Feb; 255(4):1722-31. PubMed ID: 6986378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of disulfides in the subunit structure of the insulin receptor. Reduction of class I disulfides does not impair transmembrane signalling.
    Massagué J; Czech MP
    J Biol Chem; 1982 Jun; 257(12):6729-38. PubMed ID: 7045094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrinsic differences of insulin receptor kinase activity in red and white muscle.
    James DE; Zorzano A; Böni-Schnetzler M; Nemenoff RA; Powers A; Pilch PF; Ruderman NB
    J Biol Chem; 1986 Nov; 261(32):14939-44. PubMed ID: 3021758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High affinity angiotensin II receptors in myocardial sarcolemmal membranes. Characterization of receptors and covalent linkage of 125I-angiotensin II to a membrane component of 116,000 daltons.
    Rogers TB
    J Biol Chem; 1984 Jul; 259(13):8106-14. PubMed ID: 6330100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma.
    Liu S; Baracos VE; Quinney HA; Clandinin MT
    Biochem J; 1994 May; 299 ( Pt 3)(Pt 3):831-7. PubMed ID: 8192673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incorporation of the purified human placental insulin receptor into phospholipid vesicles.
    Sweet LJ; Wilden PA; Spector AA; Pessin JE
    Biochemistry; 1985 Nov; 24(23):6571-80. PubMed ID: 4084539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insulin receptor function is preserved in a physiological state of hypoinsulinemia and insulin resistance.
    Maury J; Burnol AF; Loizeau M; Issad T; Girard J; Ferré P
    Am J Physiol; 1992 Jun; 262(6 Pt 1):E818-25. PubMed ID: 1319678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in nonobese subjects with NIDDM.
    Maegawa H; Shigeta Y; Egawa K; Kobayashi M
    Diabetes; 1991 Jul; 40(7):815-9. PubMed ID: 1647993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insulin receptors in lizard brain and liver: structural and functional studies of alpha and beta subunits demonstrate evolutionary conservation.
    Shemer J; Penhos JC; LeRoith D
    Diabetologia; 1986 May; 29(5):321-9. PubMed ID: 3522330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insulin receptors from guinea pig liver and brain: structural and functional studies.
    Lowe W; LeRoith D
    Endocrinology; 1986 Apr; 118(4):1669-77. PubMed ID: 3081332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of insulin binding to skeletal muscle sarcolemma during the development of diabetes.
    Olson EN; Smith PB
    Exp Neurol; 1981 Dec; 74(3):800-13. PubMed ID: 7030770
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.