BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33508154)

  • 1. Air Stable Iridium Catalysts for Direct Reductive Amination of Ketones.
    Polishchuk I; Sklyaruk J; Lebedev Y; Rueping M
    Chemistry; 2021 Apr; 27(19):5919-5922. PubMed ID: 33508154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary amines by transfer hydrogenative reductive amination of ketones by using cyclometalated Ir(III) catalysts.
    Talwar D; Poyatos Salguero N; Robertson CM; Xiao J
    Chemistry; 2014 Jan; 20(1):245-52. PubMed ID: 24516890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct reductive amination of ketones with ammonium salt catalysed by Cp*Ir(III) complexes bearing an amidato ligand.
    Dai Z; Pan YM; Wang SG; Zhang X; Yin Q
    Org Biomol Chem; 2021 Oct; 19(41):8934-8939. PubMed ID: 34636833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iridium-Catalyzed Direct Reductive Amination of Ketones and Secondary Amines: Breaking the Aliphatic Wall.
    Jouffroy M; Nguyen TM; Cordier M; Blot M; Roisnel T; Gramage-Doria R
    Chemistry; 2022 Jun; 28(36):e202201078. PubMed ID: 35474525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scope and Limitations of Reductive Amination Catalyzed by Half-Sandwich Iridium Complexes Under Mild Reaction Conditions.
    Nguyen DP; Sladek RN; Do LH
    Tetrahedron Lett; 2020 Aug; 61(32):. PubMed ID: 32728300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast reductive amination by transfer hydrogenation "on water".
    Lei Q; Wei Y; Talwar D; Wang C; Xue D; Xiao J
    Chemistry; 2013 Mar; 19(12):4021-9. PubMed ID: 23401346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive-Free Transfer Hydrogenative Direct Asymmetric Reductive Amination Using a Chiral Pyridine-Derived Half-Sandwich Catalyst.
    Gao Y; Wang Z; Zhang X; Zhao M; Zhang S; Wang C; Xu L; Li P
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202303709. PubMed ID: 37264719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct catalytic asymmetric reductive amination of simple aromatic ketones.
    Chang M; Liu S; Huang K; Zhang X
    Org Lett; 2013 Sep; 15(17):4354-7. PubMed ID: 23937659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iridium-catalyzed direct asymmetric reductive amination utilizing primary alkyl amines as the N-sources.
    Wu Z; Wang W; Guo H; Gao G; Huang H; Chang M
    Nat Commun; 2022 Jun; 13(1):3344. PubMed ID: 35688909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Leuckart-Wallach-type reductive amination of ketones.
    Kitamura M; Lee D; Hayashi S; Tanaka S; Yoshimura M
    J Org Chem; 2002 Nov; 67(24):8685-7. PubMed ID: 12444661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthracene-rhodium complexes with metal coordination at the central ring - a new class of catalysts for reductive amination.
    Kuchuk E; Muratov K; Perekalin DS; Chusov D
    Org Biomol Chem; 2018 Dec; 17(1):83-87. PubMed ID: 30520492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regio- and Enantioselective Iridium-Catalyzed Amination of Racemic Branched Alkyl-Substituted Allylic Acetates with Primary and Secondary Aromatic and Heteroaromatic Amines.
    Kim SW; Schwartz LA; Zbieg JR; Stivala CE; Krische MJ
    J Am Chem Soc; 2019 Jan; 141(1):671-676. PubMed ID: 30571092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective organocatalytic reductive amination.
    Storer RI; Carrera DE; Ni Y; MacMillan DW
    J Am Chem Soc; 2006 Jan; 128(1):84-6. PubMed ID: 16390133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Iridium Catalytic System Compatible with Inorganic and Organic Nitrogen Sources for Dual Asymmetric Reductive Amination Reactions.
    Gao Z; Liu J; Huang H; Geng H; Chang M
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27307-27311. PubMed ID: 34699113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures(1).
    Abdel-Magid AF; Carson KG; Harris BD; Maryanoff CA; Shah RD
    J Org Chem; 1996 May; 61(11):3849-3862. PubMed ID: 11667239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive amination using cobalt-based nanoparticles for synthesis of amines.
    Murugesan K; Chandrashekhar VG; Senthamarai T; Jagadeesh RV; Beller M
    Nat Protoc; 2020 Apr; 15(4):1313-1337. PubMed ID: 32203487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scope of the organocatalysed asymmetric reductive amination of ketones with trichlorosilane.
    Gautier FM; Jones S; Li X; Martin SJ
    Org Biomol Chem; 2011 Oct; 9(22):7860-8. PubMed ID: 21960353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Brønsted acid cooperative catalysis for asymmetric reductive amination.
    Li C; Villa-Marcos B; Xiao J
    J Am Chem Soc; 2009 May; 131(20):6967-9. PubMed ID: 19402701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multicatalytic Approach to the Hydroaminomethylation of α-Olefins.
    Hanna S; Holder JC; Hartwig JF
    Angew Chem Int Ed Engl; 2019 Mar; 58(11):3368-3372. PubMed ID: 30635956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.
    Knaus T; Böhmer W; Mutti FG
    Green Chem; 2017 Jan; 19(2):453-463. PubMed ID: 28663713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.