These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33508199)

  • 21. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles.
    Kamarudheen R; Kumari G; Baldi A
    Nat Commun; 2020 Aug; 11(1):3957. PubMed ID: 32770052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing solar cells with localized plasmons in nanovoids.
    Lal NN; Soares BF; Sinha JK; Huang F; Mahajan S; Bartlett PN; Greenham NC; Baumberg JJ
    Opt Express; 2011 Jun; 19(12):11256-63. PubMed ID: 21716355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT; Blake P; DeJarnette D; Roper DK
    Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles.
    Dallapiccola R; Gopinath A; Stellacci F; Dal Negro L
    Opt Express; 2008 Apr; 16(8):5544-55. PubMed ID: 18542657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correction to "Plasmonic Photoelectrocatalysis in Copper-Platinum Core-Shell Nanoparticle Lattices".
    Deng S; Zhang B; Choo P; Smeets PJM; Odom TW
    Nano Lett; 2021 Sep; 21(18):7894. PubMed ID: 34498874
    [No Abstract]   [Full Text] [Related]  

  • 26. Second Harmonic Spectroscopy of Surface Lattice Resonances.
    Hooper DC; Kuppe C; Wang D; Wang W; Guan J; Odom TW; Valev VK
    Nano Lett; 2019 Jan; 19(1):165-172. PubMed ID: 30525669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons.
    Teperik TV; Popov VV; GarcĂ­a de Abajo FJ; Abdelsalam M; Bartlett PN; Kelf TA; Sugawara Y; Baumberg JJ
    Opt Express; 2006 Mar; 14(5):1965-72. PubMed ID: 19503527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances.
    Farsinezhad S; Shanavas T; Mahdi N; Askar AM; Kar P; Sharma H; Shankar K
    Nanotechnology; 2018 Apr; 29(15):154006. PubMed ID: 29406316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas.
    Giannini V; Vecchi G; Rivas JG
    Phys Rev Lett; 2010 Dec; 105(26):266801. PubMed ID: 21231697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chiral Surface Lattice Resonances.
    Goerlitzer ESA; Mohammadi R; Nechayev S; Volk K; Rey M; Banzer P; Karg M; Vogel N
    Adv Mater; 2020 Jun; 32(22):e2001330. PubMed ID: 32319171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Centimeter-Scale Plasmonic Nanoparticle Arrays with Ultranarrow Surface Lattice Resonances.
    Yang F; Chen Q; Wang J; Chang JJ; Dong W; Cao W; Ye S; Shi L; Nie Z
    ACS Nano; 2023 Jan; 17(1):725-734. PubMed ID: 36575649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality.
    Ponomareva E; Volk K; Mulvaney P; Karg M
    Langmuir; 2020 Nov; 36(45):13601-13612. PubMed ID: 33147412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition.
    Rodriguez SR; Rivas JG
    Opt Express; 2013 Nov; 21(22):27411-21. PubMed ID: 24216963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-Scattering Simulations from Spherical Bimetallic Core-Shell Nanoparticles.
    Ruffino F
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33810270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis.
    Huang H; Zhang L; Lv Z; Long R; Zhang C; Lin Y; Wei K; Wang C; Chen L; Li ZY; Zhang Q; Luo Y; Xiong Y
    J Am Chem Soc; 2016 Jun; 138(21):6822-8. PubMed ID: 27175744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of localized surface plasmon/grating-coupled surface plasmon enhanced photocurrent in TiO2 thin films.
    Nootchanat S; Ninsonti H; Baba A; Ekgasit S; Thammacharoen C; Shinbo K; Kato K; Kaneko F
    Phys Chem Chem Phys; 2014 Nov; 16(44):24484-92. PubMed ID: 25308828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures.
    Chen Y; Zhang Y; Femius Koenderink A
    Opt Express; 2017 Sep; 25(18):21358-21378. PubMed ID: 29041435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.
    Erwin WR; Coppola A; Zarick HF; Arora P; Miller KJ; Bardhan R
    Nanoscale; 2014 Nov; 6(21):12626-34. PubMed ID: 25188374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.