BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3350828)

  • 1. Influence of geometric taper on the derivation of the true propagation coefficient using a three point method.
    Reuderink P; Sipkema P; Westerhof N
    J Biomech; 1988; 21(2):141-53. PubMed ID: 3350828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers.
    Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N
    J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of different methods for the determination of the true wave propagation coefficient, in rubber tubes and the canine thoracic aorta.
    Bertram CD; Gow BS; Greenwald SE
    Med Eng Phys; 1997 Apr; 19(3):212-22. PubMed ID: 9239640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave propagation with different pressure signals: an experimental study on the latex tube.
    Ursino M; Artioli E; Gallerani M
    Med Biol Eng Comput; 1993 Jul; 31(4):363-71. PubMed ID: 8231298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method of measuring propagation coefficients and characteristic impedance in blood vessels.
    Milnor WR; Nichols WW
    Circ Res; 1975 May; 36(5):631-9. PubMed ID: 1091370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental comparison of different methods of measuring wave propagation in viscoelastic tubes.
    Ursino M; Artioli E; Gallerani M
    J Biomech; 1994 Jul; 27(7):979-90. PubMed ID: 8063848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo.
    Milnor WR; Bertram CD
    Circ Res; 1978 Dec; 43(6):870-9. PubMed ID: 709749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general method of determining the frequency-dependent propagation coefficient and characteristic impedance of an artery in the presence of reflections.
    Bertram CD; Greenwald SE
    J Biomech Eng; 1992 Feb; 114(1):2-9. PubMed ID: 1491581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse wave propagation.
    Li JK; Melbin J; Riffle RA; Noordergraaf A
    Circ Res; 1981 Aug; 49(2):442-52. PubMed ID: 7249280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical analysis of pressure pulse propagation in arterial vessels.
    Belardinelli E; Cavalcanti S
    J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity field of pulsatile flow in a porous tube.
    Chang HN; Ha JS; Park JK; Kim IH; Shin HD
    J Biomech; 1989; 22(11-12):1257-62. PubMed ID: 2625426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verification of the coupled-momentum method with Womersley's Deformable Wall analytical solution.
    Filonova V; Arthurs CJ; Vignon-Clementel IE; Figueroa CA
    Int J Numer Method Biomed Eng; 2020 Feb; 36(2):e3266. PubMed ID: 31617679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of oscillatory flow pressure gradient in an elastic artery model.
    Cohen MI; Wang DM; Tarbell JM
    Biorheology; 1995; 32(4):459-71. PubMed ID: 7579210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exponential taper in arteries: an exact solution of its effect on blood flow velocity waveforms and impedance.
    Myers LJ; Capper WL
    Med Eng Phys; 2004 Mar; 26(2):147-55. PubMed ID: 15036182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of all possible combinations of four measurements determining true propagation in arteries.
    She J; Bertram CD; Gow BS
    J Biomed Eng; 1993 Sep; 15(5):379-86. PubMed ID: 8231154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Investigation of Pulse Wave Propagation in Arteries Using Fluid Structure Interaction Capabilities.
    Elkenani H; Al-Bahkali E; Souli M
    Comput Math Methods Med; 2017; 2017():4198095. PubMed ID: 29147132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of tube ovalling on pressure wave propagation speed.
    Anderson A; Johnson GR
    Proc Inst Mech Eng H; 1990; 204(4):245-51. PubMed ID: 2090128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of length on the fundamental resonance frequency of arterial models having radial dilatation.
    Wang YY; Lia WC; Hsiu H; Jan MY; Wang WK
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):313-8. PubMed ID: 10743772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.