These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3350831)

  • 1. Biomechanical basis of optimal scoliosis surgical correction.
    Ghista DN; Viviani GR; Subbaraj K; Lozada PJ; Srinivasan TM; Barnes G
    J Biomech; 1988; 21(2):77-88. PubMed ID: 3350831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical analysis and simulation of scoliosis surgical correction.
    Viviani GR; Ghista DN; Lozada PJ; Subbaraj K; Barnes G
    Clin Orthop Relat Res; 1986 Jul; (208):40-7. PubMed ID: 3720137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical simulations of scoliotic spinal deformity and correction.
    Noone G; Mazumdar J; Kothiyal KP; Ghista DN; Subbaraj K; Viviani GR
    Australas Phys Eng Sci Med; 1993 Jun; 16(2):63-74. PubMed ID: 8357305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presurgical finite element simulation of scoliosis correction.
    Subbaraj K; Ghista DN; Viviani GR
    J Biomed Eng; 1989 Jan; 11(1):9-18. PubMed ID: 2927103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of forces acting on implant rods and degree of scoliosis correction.
    Salmingo RA; Tadano S; Fujisaki K; Abe Y; Ito M
    Clin Biomech (Bristol, Avon); 2013 Feb; 28(2):122-8. PubMed ID: 23273729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element simulation of spinal deformities correction by in situ contouring technique.
    Dumas R; Lafage V; Lafon Y; Steib JP; Mitton D; Skalli W
    Comput Methods Biomech Biomed Engin; 2005 Oct; 8(5):331-7. PubMed ID: 16298855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of vertebral derotation techniques for the surgical correction of thoracic scoliosis. A numerical study through case simulations and a sensitivity analysis.
    Martino J; Aubin CE; Labelle H; Wang X; Parent S
    Spine (Phila Pa 1976); 2013 Jan; 38(2):E73-83. PubMed ID: 23124259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does differential rod contouring contribute to 3-dimensional correction and affect the bone-screw forces in adolescent idiopathic scoliosis instrumentation?
    Wang X; Boyer L; Le Naveaux F; Schwend RM; Aubin CE
    Clin Biomech (Bristol, Avon); 2016 Nov; 39():115-121. PubMed ID: 27750078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical simulation and analysis of scoliosis correction using a fusionless intravertebral epiphyseal device.
    Clin J; Aubin CÉ; Parent S
    Spine (Phila Pa 1976); 2015 Mar; 40(6):369-76. PubMed ID: 25584943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation.
    Duke K; Aubin CE; Dansereau J; Labelle H
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):923-31. PubMed ID: 16061317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific finite element model of the spine and spinal cord to assess the neurological impact of scoliosis correction: preliminary application on two cases with and without intraoperative neurological complications.
    Henao J; Aubin CÉ; Labelle H; Arnoux PJ
    Comput Methods Biomech Biomed Engin; 2016; 19(8):901-10. PubMed ID: 26324393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D finite element simulation of Cotrel-Dubousset correction.
    Lafage V; Dubousset J; Lavaste F; Skalli W
    Comput Aided Surg; 2004; 9(1-2):17-25. PubMed ID: 15792933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model.
    Desroches G; Aubin CE; Sucato DJ; Rivard CH
    Med Biol Eng Comput; 2007 Aug; 45(8):759-68. PubMed ID: 17624563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global postural re-education in pediatric idiopathic scoliosis: a biomechanical modeling and analysis of curve reduction during active and assisted self-correction.
    Dupuis S; Fortin C; Caouette C; Leclair I; Aubin CÉ
    BMC Musculoskelet Disord; 2018 Jun; 19(1):200. PubMed ID: 30037348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model.
    Lafon Y; Steib JP; Skalli W
    Spine (Phila Pa 1976); 2010 Feb; 35(4):453-9. PubMed ID: 20110840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does implant distribution affect 3D correction and bone-screw forces in thoracic adolescent idiopathic scoliosis spinal instrumentation?
    Le Navéaux F; Larson AN; Labelle H; Wang X; Aubin CÉ
    Clin Biomech (Bristol, Avon); 2016 Nov; 39():25-31. PubMed ID: 27639485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.
    Wang X; Aubin CE; Coleman J; Rawlinson J
    Clin Spine Surg; 2017 May; 30(4):E323-E330. PubMed ID: 28437333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element study on intra-operative corrective forces and evaluation of screw density in scoliosis surgeries.
    Musapoor A; Nikkhoo M; Haghpanahi M
    Proc Inst Mech Eng H; 2018 Dec; 232(12):1245-1254. PubMed ID: 30453829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporary internal distraction as an aid to correction of severe scoliosis.
    Buchowski JM; Bhatnagar R; Skaggs DL; Sponseller PD
    J Bone Joint Surg Am; 2006 Sep; 88(9):2035-41. PubMed ID: 16951121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.