BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 33508317)

  • 1. Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase.
    Stuehr DJ; Misra S; Dai Y; Ghosh A
    J Biol Chem; 2021; 296():100336. PubMed ID: 33508317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content.
    Ghosh A; Stasch JP; Papapetropoulos A; Stuehr DJ
    J Biol Chem; 2014 May; 289(22):15259-71. PubMed ID: 24733395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives.
    Ghosh A; Stuehr DJ
    Antioxid Redox Signal; 2017 Feb; 26(4):182-190. PubMed ID: 26983679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BAY58-2667 Activates Different Soluble Guanylyl Cyclase Species by Distinct Mechanisms that Indicate Its Principal Target in Cells is the Heme-Free Soluble Guanylyl Cyclase-Heat Shock Protein 90 Complex.
    Dai Y; Stuehr DJ
    Mol Pharmacol; 2023 May; 103(5):286-296. PubMed ID: 36868790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NO rapidly mobilizes cellular heme to trigger assembly of its own receptor.
    Dai Y; Faul EM; Ghosh A; Stuehr DJ
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor.
    Beuve A
    Antioxid Redox Signal; 2017 Jan; 26(3):137-149. PubMed ID: 26906466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble guanylyl cyclase requires heat shock protein 90 for heme insertion during maturation of the NO-active enzyme.
    Ghosh A; Stuehr DJ
    Proc Natl Acad Sci U S A; 2012 Aug; 109(32):12998-3003. PubMed ID: 22837396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox regulation of soluble guanylyl cyclase.
    Shah RC; Sanker S; Wood KC; Durgin BG; Straub AC
    Nitric Oxide; 2018 Jun; 76():97-104. PubMed ID: 29578056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches.
    Sumi MP; Ghosh A
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inherent dysfunction in soluble guanylyl cyclase is present in the airway of severe asthmatics and is associated with aberrant redox enzyme expression and compromised NO-cGMP signaling.
    Ghosh A; Koziol-White CJ; Jester WF; Erzurum SC; Asosingh K; Panettieri RA; Stuehr DJ
    Redox Biol; 2021 Feb; 39():101832. PubMed ID: 33360351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting heme-oxidized soluble guanylate cyclase to promote osteoblast function.
    Tesfamariam B
    Drug Discov Today; 2020 Feb; 25(2):422-429. PubMed ID: 31846712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels.
    Tawa M; Okamura T
    Vascul Pharmacol; 2022 Aug; 145():107023. PubMed ID: 35718342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling.
    Rahaman MM; Nguyen AT; Miller MP; Hahn SA; Sparacino-Watkins C; Jobbagy S; Carew NT; Cantu-Medellin N; Wood KC; Baty CJ; Schopfer FJ; Kelley EE; Gladwin MT; Martin E; Straub AC
    Circ Res; 2017 Jul; 121(2):137-148. PubMed ID: 28584062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock protein 90 regulates soluble guanylyl cyclase maturation by a dual mechanism.
    Dai Y; Schlanger S; Haque MM; Misra S; Stuehr DJ
    J Biol Chem; 2019 Aug; 294(35):12880-12891. PubMed ID: 31311859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor.
    Montfort WR; Wales JA; Weichsel A
    Antioxid Redox Signal; 2017 Jan; 26(3):107-121. PubMed ID: 26979942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of soluble guanylyl cyclase in living cells proceeds without loss of haem and involves heterodimer dissociation as a common step.
    Dai Y; Stuehr DJ
    Br J Pharmacol; 2022 Jun; 179(11):2505-2518. PubMed ID: 33975383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide.
    Zhou Z; Martin E; Sharina I; Esposito I; Szabo C; Bucci M; Cirino G; Papapetropoulos A
    Pharmacol Res; 2016 Sep; 111():556-562. PubMed ID: 27378567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of smooth muscle CYB5R3 amplifies angiotensin II-induced hypertension by increasing sGC heme oxidation.
    Durgin BG; Hahn SA; Schmidt HM; Miller MP; Hafeez N; Mathar I; Freitag D; Sandner P; Straub AC
    JCI Insight; 2019 Oct; 4(19):. PubMed ID: 31487266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between the 90-kDa heat shock protein and soluble guanylyl cyclase: physiological significance and mapping of the domains mediating binding.
    Papapetropoulos A; Zhou Z; Gerassimou C; Yetik G; Venema RC; Roussos C; Sessa WC; Catravas JD
    Mol Pharmacol; 2005 Oct; 68(4):1133-41. PubMed ID: 16024662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erectile Dysfunction in Heme-Deficient Nitric Oxide-Unresponsive Soluble Guanylate Cyclase Knock-In Mice.
    Decaluwé K; Pauwels B; Boydens C; Thoonen R; Buys ES; Brouckaert P; Van de Voorde J
    J Sex Med; 2017 Feb; 14(2):196-204. PubMed ID: 28161078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.