These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33508342)

  • 1. Laser irradiation of ocular tissues to enhance drug delivery.
    Thakur RRS; Adwan S; Tekko I; Soliman K; Donnelly RF
    Int J Pharm; 2021 Mar; 596():120282. PubMed ID: 33508342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled intra- and transdermal protein delivery using a minimally invasive Erbium:YAG fractional laser ablation technology.
    Bachhav YG; Heinrich A; Kalia YN
    Eur J Pharm Biopharm; 2013 Jun; 84(2):355-64. PubMed ID: 23207321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transdermal delivery of human growth hormone via laser-generated micropores.
    Song Y; Hemmady K; Puri A; Banga AK
    Drug Deliv Transl Res; 2018 Apr; 8(2):450-460. PubMed ID: 28321676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery.
    Thakur RR; Tekko IA; Al-Shammari F; Ali AA; McCarthy H; Donnelly RF
    Drug Deliv Transl Res; 2016 Dec; 6(6):800-815. PubMed ID: 27709355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of controlled laser microporation on drug transport kinetics into and across the skin.
    Bachhav YG; Summer S; Heinrich A; Bragagna T; Böhler C; Kalia YN
    J Control Release; 2010 Aug; 146(1):31-6. PubMed ID: 20678988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye.
    Roy G; Garg P; Venuganti VVK
    Int J Pharm; 2022 Jan; 612():121305. PubMed ID: 34800618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery.
    Tratta E; Pescina S; Padula C; Santi P; Nicoli S
    Eur J Pharm Biopharm; 2014 Sep; 88(1):116-22. PubMed ID: 24816128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanosuspension-loaded dissolving bilayer microneedles for hydrophobic drug delivery to the posterior segment of the eye.
    Wu Y; Vora LK; Mishra D; Adrianto MF; Gade S; Paredes AJ; Donnelly RF; Singh TRR
    Biomater Adv; 2022 Jun; 137():212767. PubMed ID: 35929230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates intradermal macromolecule and nanoparticle delivery.
    Engelke L; Winter G; Engert J
    Eur J Pharm Biopharm; 2018 Jul; 128():119-130. PubMed ID: 29660407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye.
    Park SH; Jo DH; Cho CS; Lee K; Kim JH; Ryu S; Joo C; Kim JH; Ryu W
    Eur J Pharm Biopharm; 2018 Dec; 133():31-41. PubMed ID: 30267835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using laser microporation to improve transdermal delivery of diclofenac: Increasing bioavailability and the range of therapeutic applications.
    Bachhav YG; Heinrich A; Kalia YN
    Eur J Pharm Biopharm; 2011 Aug; 78(3):408-14. PubMed ID: 21397689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-assisted topical drug delivery by using a low-fluence fractional laser: imiquimod and macromolecules.
    Lee WR; Shen SC; Al-Suwayeh SA; Yang HH; Yuan CY; Fang JY
    J Control Release; 2011 Aug; 153(3):240-8. PubMed ID: 21435360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcutaneous drug delivery by liposomes using fractional laser technology.
    Fujimoto T; Wang J; Baba K; Oki Y; Hiruta Y; Ito M; Ito S; Kanazawa H
    Lasers Surg Med; 2017 Jul; 49(5):525-532. PubMed ID: 27990655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-irradiation recovery time strongly influences fractional laser-facilitated skin absorption.
    Lee WR; Hsiao CY; Huang TH; Wang CL; Alalaiwe A; Chen EL; Fang JY
    Int J Pharm; 2019 Jun; 564():48-58. PubMed ID: 30999045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of oleic acid on the corneal permeability of compounds and evaluation of its ocular irritation of rabbit eyes.
    Gao XC; Qi HP; Bai JH; Huang L; Cui H
    Curr Eye Res; 2014 Dec; 39(12):1161-8. PubMed ID: 24749683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of Effects of Low-Frequency Ultrasound on Scleral Permeability and Collagen Network.
    Suen WL; Jiang J; Wong HS; Qu J; Chau Y
    Ultrasound Med Biol; 2016 Nov; 42(11):2650-2661. PubMed ID: 27576194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery.
    Thakur RR; Fallows SJ; McMillan HL; Donnelly RF; Jones DS
    J Pharm Pharmacol; 2014 Apr; 66(4):584-95. PubMed ID: 24127904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional laser-assisted percutaneous drug delivery via temperature-responsive liposomes.
    Fujimoto T; Ito M; Ito S; Kanazawa H
    J Biomater Sci Polym Ed; 2017 May; 28(7):679-689. PubMed ID: 28277004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transdermal delivery of FITC-Dextrans with different molecular weights using radiofrequency microporation.
    Ahn GY; Eo HS; Kim D; Choi SW
    Biomater Res; 2020 Dec; 24(1):22. PubMed ID: 33298195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ex vivo models to evaluate the role of ocular melanin in trans-scleral drug delivery.
    Pescina S; Santi P; Ferrari G; Padula C; Cavallini P; Govoni P; Nicoli S
    Eur J Pharm Sci; 2012 Aug; 46(5):475-83. PubMed ID: 22484210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.