These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 33508635)
1. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Zhang J; Chen Y; Fu L; Guo E; Wang B; Dai L; Si T Curr Opin Biotechnol; 2021 Feb; 67():88-98. PubMed ID: 33508635 [TBL] [Abstract][Full Text] [Related]
3. Merging automation and fundamental discovery into the design-build-test-learn cycle of nontraditional microbes. Gurdo N; Volke DC; Nikel PI Trends Biotechnol; 2022 Oct; 40(10):1148-1159. PubMed ID: 35410817 [TBL] [Abstract][Full Text] [Related]
4. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. Li M; Borodina I FEMS Yeast Res; 2015 Feb; 15(1):1-12. PubMed ID: 25238571 [TBL] [Abstract][Full Text] [Related]
5. Building biological foundries for next-generation synthetic biology. Chao R; Yuan Y; Zhao H Sci China Life Sci; 2015 Jul; 58(7):658-65. PubMed ID: 25985756 [TBL] [Abstract][Full Text] [Related]
6. Advances in analytical tools for high throughput strain engineering. Marcellin E; Nielsen LK Curr Opin Biotechnol; 2018 Dec; 54():33-40. PubMed ID: 29448095 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in biofuel production through metabolic engineering. Joshi S; Mishra S Bioresour Technol; 2022 May; 352():127037. PubMed ID: 35318143 [TBL] [Abstract][Full Text] [Related]
8. From first generation biofuels to advanced solar biofuels. Aro EM Ambio; 2016 Jan; 45 Suppl 1(Suppl 1):S24-31. PubMed ID: 26667057 [TBL] [Abstract][Full Text] [Related]
9. Lessons from Two Design-Build-Test-Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning. Opgenorth P; Costello Z; Okada T; Goyal G; Chen Y; Gin J; Benites V; de Raad M; Northen TR; Deng K; Deutsch S; Baidoo EEK; Petzold CJ; Hillson NJ; Garcia Martin H; Beller HR ACS Synth Biol; 2019 Jun; 8(6):1337-1351. PubMed ID: 31072100 [TBL] [Abstract][Full Text] [Related]
14. Lignocellulosic biomass: Hurdles and challenges in its valorization. Singhvi MS; Gokhale DV Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9305-9320. PubMed ID: 31707441 [TBL] [Abstract][Full Text] [Related]
15. Genome engineering and synthetic biology for biofuels: A bibliometric analysis. Dai Y; Wang ZA; Li Y; Wang J; Ren J; Zhang P; Liu X Biotechnol Appl Biochem; 2020 Nov; 67(6):824-834. PubMed ID: 33146902 [TBL] [Abstract][Full Text] [Related]
16. [Progress and perspective on development of non-model industrial bacteria as chassis cells for biochemical production in the synthetic biology era]. Yang Y; Geng B; Song H; Hu M; He Q; Chen S; Bai F; Yang S Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):874-910. PubMed ID: 33783156 [TBL] [Abstract][Full Text] [Related]
17. Advances and prospects in metabolic engineering of Zymomonas mobilis. Wang X; He Q; Yang Y; Wang J; Haning K; Hu Y; Wu B; He M; Zhang Y; Bao J; Contreras LM; Yang S Metab Eng; 2018 Nov; 50():57-73. PubMed ID: 29627506 [TBL] [Abstract][Full Text] [Related]
18. Perspective on opportunities in industrial biotechnology in renewable chemicals. Erickson B; Nelson ; Winters P Biotechnol J; 2012 Feb; 7(2):176-85. PubMed ID: 21932250 [TBL] [Abstract][Full Text] [Related]
19. Automating the design-build-test-learn cycle towards next-generation bacterial cell factories. Gurdo N; Volke DC; McCloskey D; Nikel PI N Biotechnol; 2023 May; 74():1-15. PubMed ID: 36736693 [TBL] [Abstract][Full Text] [Related]
20. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. Wang S; Sun X; Yuan Q Bioresour Technol; 2018 Jun; 258():302-309. PubMed ID: 29567023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]