BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33508650)

  • 1. A systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration.
    Amini Z; Lari R
    Tissue Cell; 2021 Apr; 69():101494. PubMed ID: 33508650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decellularized Versus Fresh-Frozen Allografts in Anterior Cruciate Ligament Reconstruction: An In Vitro Study in a Rabbit Model.
    Dong S; Huangfu X; Xie G; Zhang Y; Shen P; Li X; Qi J; Zhao J
    Am J Sports Med; 2015 Aug; 43(8):1924-34. PubMed ID: 26037623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decellularized Bone Matrix Scaffold for Bone Regeneration.
    Chen G; Lv Y
    Methods Mol Biol; 2018; 1577():239-254. PubMed ID: 28770492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sterilization method for decellularized xenogeneic cardiovascular scaffolds.
    Fidalgo C; Iop L; Sciro M; Harder M; Mavrilas D; Korossis S; Bagno A; Palù G; Aguiari P; Gerosa G
    Acta Biomater; 2018 Feb; 67():282-294. PubMed ID: 29183849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects.
    Crowley C; Wong JM; Fisher DM; Khan WS
    Curr Stem Cell Res Ther; 2013 May; 8(3):243-52. PubMed ID: 23317473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Decellularized Porcine Xenograft-Derived Bone Scaffold for Clinical Use as a Bone Graft Substitute: A Critical Evaluation of Processing and Structure.
    Bracey DN; Seyler TM; Jinnah AH; Lively MO; Willey JS; Smith TL; Van Dyke ME; Whitlock PW
    J Funct Biomater; 2018 Jul; 9(3):. PubMed ID: 30002336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue engineering by way of allograft revitalization: mechanistic and mechanical investigations using a porcine model.
    Runyan CM; Ali ST; Chen W; Calder BW; Rumburg AE; Billmire DA; Taylor JA
    J Oral Maxillofac Surg; 2014 May; 72(5):1000.e1-11. PubMed ID: 24742484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.
    Ko E; Alberti K; Lee JS; Yang K; Jin Y; Shin J; Yang HS; Xu Q; Cho SW
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22819-29. PubMed ID: 27502160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of selected scaffolds for bone tissue engineering: a systematic review.
    Hosseinpour S; Ghazizadeh Ahsaie M; Rezai Rad M; Baghani MT; Motamedian SR; Khojasteh A
    Oral Maxillofac Surg; 2017 Jun; 21(2):109-129. PubMed ID: 28194530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of extracellular matrix scaffolds on histological outcomes of regenerative endodontics in experimental animal models: a systematic review.
    Elnawam H; Abdallah A; Nouh S; Khalil NM; Elbackly R
    BMC Oral Health; 2024 Apr; 24(1):511. PubMed ID: 38689279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development and implantation of a biologically derived allograft scaffold.
    Nowocin AK; Southgate A; Shurey S; Sibbons P; Gabe SM; Ansari T
    J Tissue Eng Regen Med; 2016 Feb; 10(2):140-8. PubMed ID: 23554406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A porcine xenograft-derived bone scaffold is a biocompatible bone graft substitute: An assessment of cytocompatibility and the alpha-Gal epitope.
    Bracey DN; Seyler TM; Jinnah AH; Smith TL; Ornelles DA; Deora R; Parks GD; Van Dyke ME; Whitlock PW
    Xenotransplantation; 2019 Sep; 26(5):e12534. PubMed ID: 31342586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenogeneic cardiac extracellular matrix scaffolds with or without seeded mesenchymal stem cells exhibit distinct in vivo immunosuppressive and regenerative properties.
    Papalamprou A; Chang CW; Vapniarsky N; Clark A; Walker N; Griffiths LG
    Acta Biomater; 2016 Nov; 45():155-168. PubMed ID: 27445086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascularization of Natural and Synthetic Bone Scaffolds.
    Liu X; Jakus AE; Kural M; Qian H; Engler A; Ghaedi M; Shah R; Steinbacher DM; Niklason LE
    Cell Transplant; 2018 Aug; 27(8):1269-1280. PubMed ID: 30008231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decellularized cartilage matrix scaffolds with laser-machined micropores for cartilage regeneration and articular cartilage repair.
    Li Y; Xu Y; Liu Y; Wang Z; Chen W; Duan L; Gu D
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110139. PubMed ID: 31546425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study.
    Semyari H; Rajipour M; Sabetkish S; Sabetkish N; Abbas FM; Kajbafzadeh AM
    Cell Tissue Bank; 2016 Mar; 17(1):69-83. PubMed ID: 26108195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decellularized bone extracellular matrix in skeletal tissue engineering.
    Rothrauff BB; Tuan RS
    Biochem Soc Trans; 2020 Jun; 48(3):755-764. PubMed ID: 32369551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradient scaffolds for osteochondral tissue engineering and regeneration.
    Zhang B; Huang J; Narayan RJ
    J Mater Chem B; 2020 Sep; 8(36):8149-8170. PubMed ID: 32776030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decellularized Tissue for Muscle Regeneration.
    Urciuolo A; De Coppi P
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30110909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells.
    Nie X; Wang DA
    Biomater Sci; 2018 Oct; 6(11):2798-2811. PubMed ID: 30229775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.