These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33508650)

  • 21. Piezoelectric material - A promising approach for bone and cartilage regeneration.
    More N; Kapusetti G
    Med Hypotheses; 2017 Oct; 108():10-16. PubMed ID: 29055380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration.
    Gawlitta D; Benders KE; Visser J; van der Sar AS; Kempen DH; Theyse LF; Malda J; Dhert WJ
    Tissue Eng Part A; 2015 Feb; 21(3-4):694-703. PubMed ID: 25316202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone graft materials in fixation of orthopaedic implants in sheep.
    Babiker H
    Dan Med J; 2013 Jul; 60(7):B4680. PubMed ID: 23809979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Periosteum Extracellular-Matrix-Mediated Acellular Mineralization during Bone Formation.
    Lin X; Zhao C; Zhu P; Chen J; Yu H; Cai Y; Zhang Q; Qin A; Fan S
    Adv Healthc Mater; 2018 Feb; 7(4):. PubMed ID: 29266835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of a Low-Cost, Off-the-Shelf, Decellularized Cartilage Xenograft for Tissue Regeneration.
    Vernice NA; Berri N; Bender RJ; Dong X; Spector JA
    Ann Plast Surg; 2022 May; 88(3 Suppl 3):S296-S301. PubMed ID: 35513335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.
    Kim B; Ventura R; Lee BT
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration.
    Gupta SK; Kumar R; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():919-928. PubMed ID: 27987789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematic review of preclinical and clinical studies on scaffold use in knee ligament regeneration.
    Caudwell M; Crowley C; Khan WS; Wong JM
    Curr Stem Cell Res Ther; 2015; 10(1):11-8. PubMed ID: 25012742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.
    Cunniffe GM; Vinardell T; Murphy JM; Thompson EM; Matsiko A; O'Brien FJ; Kelly DJ
    Acta Biomater; 2015 Sep; 23():82-90. PubMed ID: 26038199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in electrospun nanofibers for bone and cartilage regeneration.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Balasubramanian P; Jin G; Valipouri A; Ramakrishna S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4656-71. PubMed ID: 23901488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering Pre-vascularized Scaffolds for Bone Regeneration.
    Barabaschi GD; Manoharan V; Li Q; Bertassoni LE
    Adv Exp Med Biol; 2015; 881():79-94. PubMed ID: 26545745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone tissue regeneration: the role of scaffold geometry.
    Zadpoor AA
    Biomater Sci; 2015 Feb; 3(2):231-45. PubMed ID: 26218114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decellularized tracheal matrix scaffold for tracheal tissue engineering: in vivo host response.
    Zang M; Zhang Q; Chang EI; Mathur AB; Yu P
    Plast Reconstr Surg; 2013 Oct; 132(4):549e-559e. PubMed ID: 24076702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
    El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR
    Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.
    Jiang T; Nukavarapu SP; Deng M; Jabbarzadeh E; Kofron MD; Doty SB; Abdel-Fattah WI; Laurencin CT
    Acta Biomater; 2010 Sep; 6(9):3457-70. PubMed ID: 20307694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaffold strategies for modulating immune microenvironment during bone regeneration.
    He J; Chen G; Liu M; Xu Z; Chen H; Yang L; Lv Y
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110411. PubMed ID: 31923946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic Effects of Beta Tri-Calcium Phosphate and Porcine-Derived Decellularized Bone Extracellular Matrix in 3D-Printed Polycaprolactone Scaffold on Bone Regeneration.
    Kim JY; Ahn G; Kim C; Lee JS; Lee IG; An SH; Yun WS; Kim SY; Shim JH
    Macromol Biosci; 2018 Jun; 18(6):e1800025. PubMed ID: 29687597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New Bone Formation in the Whole Decellularized Cortical Bone Scaffold Using the Model of Revitalizing a Haversian System.
    Kim CW; Ha HJ; Yang JY; Hwang E
    J Craniofac Surg; 2022 May; 33(3):962-968. PubMed ID: 34510065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.